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A mesoscopic model of finite temperature superfluid helium-4 based on coupled

Langevin-Navier-Stokes dynamics is proposed. Drawing upon scaling arguments

and available numerical results, a numerical method for designing well resolved,

mesoscopic calculations of finite temperature superfluid turbulence is developed.

The application of model and numerical method to the problem of fully developed

turbulence decay in helium II, indicates that the spectral structure of normal-fluid and

superfluid turbulence is significantly more complex than that of turbulence in simple-

fluids. Analysis based on a forced flow of helium-4 at 1.3 K, where viscous dissipation

in the normal-fluid is compensated by the Lundgren force, indicate three scaling

regimes in the normal-fluid, that include the inertial, low wavenumber, Kolmogorov

k−5/3 regime, a sub-turbulence, low Reynolds number, fluctuating k−2.2 regime, and

an intermediate, viscous k−6 range that connects the two. The k−2.2 regime is due to

normal-fluid forcing by superfluid vortices at high wavenumbers. There are also three

scaling regimes in the superfluid, that include a k−3 range that corresponds to the

growth of superfluid vortex instabilities due to mutual-friction action, and an adjacent,

low wavenumber, k−5/3 regime that emerges during the termination of this growth, as

superfluid vortices agglomerate between intense normal-fluid vorticity regions, and

weakly polarized bundles are formed. There is also evidence of a high wavenumber

k−1 range that corresponds to the probing of individual-vortex velocity fields. The

Kelvin waves cascade (the main dynamical effect in zero temperature superfluids)

appears to be damped at the intervortex space scale. C© 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4898666]

I. INTRODUCTION

In analogy with classical particle systems, the physics of quantum particles also include a hy-

drodynamic range of scales. In many important cases, e.g., quark-gluon plasma, the hydrodynamics

of quantum systems are similar to classical,1 hence, they do not pose any new fundamental problems

for fluid dynamics. A very important exception are systems undergoing a Bose-Einstein conden-

sation which is responsible for the phenomenon of superfluidity, and gives rise to the two-fluid

model of Landau and Tisza. Indeed, below a critical temperature, superfluidity is responsible for the

emergence of an inviscid fluid (“superfluid”) whose dynamics need to be considered in conjunction

with the dynamics of a standard simple-fluid, called for this reason “normal-fluid,” in order to model

real-life helium II experiments. Although the superfluid is inviscid, it is capable of supporting vor-

tical modes of flow via the appearance of topological defects, also known as, quantized vortices. A

complicated tangle of discrete, quantized vortices is refered to as “superfluid turbulence,”2–7 and its

hydrodynamic description made necessary an extension of the Landau-Tisza model. Notable such

extensions are the Hall-Vinen and Gorter-Mellink equations of two-fluid hydrodynamics with vor-

tices. In agreement with their hydrodynamic nature, these equations refer to a continuum distribution

of superfluid vorticity.

An important development in superfluid turbulence studies was the vortex dynamical reformu-

lation of the Hall-Vinen equations by Schwarz.8 The great advantage of Schwarz’s approach is an
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explicit understanding of superfluid vorticity on par with similar, simple-fluid dynamics studies, for

a wide range of temperatures, T ≥ 1 K. Its limitations include a lack of a self-consistent evolution of

the normal-fluid (which follows Hall-Vinen dynamics) and, by default, its macroscopic character. On

the other side of the research spectrum, there are microscopic studies of superfluid turbulence based

on the Gross-Pitaevskii equation.9–11 Their great advantage is their inclusion of complete quantized

vortex physics, such as compressibility and vortex core dynamics during reconnections. But there

are great limitations too: Gross-Pitaevskii physics only apply to weakly interacting, Bose-Einstein

condensed, dilute gases, hence, they offer, at most, a qualitative understanding of strongly interact-

ing helium II physics. Moreover, they do not include finite temperature effects, and even close to

absolute zero, they only model the condensate atoms and not the totality of superfluid atoms.

In between these limiting cases, there is the mesoscopic regime of superfluid dynamics that

includes discrete (rather than continuous) superfluid vortices interacting with a continuous, Navier-

Stokes normal-fluid.1 The present research refers to this range of scales, and takes advantage of some

good features, i.e., the ability to: (a) perform self-consistent computations, coupling the superfluid

vortices with the normal-fluid at finite temperatures, (b) compute the explicit dynamics of individual

quantized vortices, (c) inform macroscopic studies by averaging the mesoscopic variables, and (d)

provide an effective description of microscopic physics of systems, that are too large for an analysis

in terms of Gross-Pitaevskii or quantum field theoretic equations. The limitations of the method

include its crude model of vortex reconnections, and its demanding computational complexity, that

restricts its application to relatively small systems as compared with the macroscopic (Hall-Vinen,

Gorter-Mellink) approach.

I propose a new, powerful, mesoscopic model of superfluid vortex dynamics, which is based

on the Langevin equation, and is coupled with Navier-Stokes dynamics for the normal-fluid. I

discuss at great length how to set up well resolved fully developed turbulence calculations with

this model, and perform such computations for decaying, finite temperature, superfluid turbulence.

Due to the lack of any prior theoretical computations of (fully coupled, mesoscopic) homogeneous,

isotropic, superfluid turbulence, I concentrate here on the most important physical aspects. These are

the evolution of global quantities such as energies and vortex-tangle length, and the identification

of spectral scaling regimes. By associating the latter with specific interactions between vortical

structures in the two fluids, an intuitive understanding of the interscale energy transfer in finite

temperature, superfluid turbulence is achieved. Notably, the theoretical results are fully consistent

with available experiments, allowing a deeper physical understanding of them. Finally, I discuss

ways for improving the present calculations, and tackling remaining open questions.

II. MESOSCOPIC MODEL OF FINITE TEMPERATURE SUPERFLUIDS

I elaborate a mesoscopic viewpoint of finite temperature superfluid dynamics. This viewpoint is

in direct correspondence with the emergence of superfluidity from a “condensation” type, phase tran-

sition in a simple-fluid (“normal-fluid”) below a critical temperature. Here, by simple-fluid, I mean

an ordinary Navier-Stokes fluid that obeys a linear stress/strain constitutive law. Indeed, above the

superfluid transition temperature Tc, and for sufficiently small frequencies of mechanical excitation,
4He molecules reach a local thermodynamic equilibrium and their out-of-equilibrium large scale

physics are very well described by simple-fluid hydrodynamics (hence, the origin of the “normal-

fluid” terminology). Below the superfluid transition, however, the situation is different. As the density

fraction χ = ρs/(ρs + ρn) (where ρs and ρn are the superfluid and normal-fluid densities) increases

from zero towards unity, inhomogeneities can appear in the system in the form of linear topological

defects, i.e., of quantized superfluid vortices, that form a vortex tangle. In contrast to classical vor-

tices, the circulation of superfluid vortices is always the same, and depends only on the mass of the

superfluid molecules. Progressively, as T → 0 K, only the topological defects remain in the system

and χ → 1. So, in a sense, the superfluid vortices behave as a large linear-particle suspension into the

normal-fluid. Since superfluid vortices can grow to sizes comparable to the system-size, they remain

discrete, and out-of-equilibrium, at the range of scales where the non-condensed quasiparticles form

a normal-fluid continuum. Hence, the combined superfluid/normal-fluid system becomes a “complex

fluid” similar to colloidal suspensions and polymeric liquids. Behind the apparent similarities with
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the dynamics of polymeric liquids, there exist crucial differences too, the most important being that

polymer chains preserve their topology upon collision (become entangled) and obstruct each others

motion, whilst vortices change their topology upon collision (they reconnect), and excite additional

modes of motion (Kelvin waves). Nevertheless, in both cases, the main difficulties are similar: due to

the presence of large-particle inhomogeneities, it is not easy to coarse grain the dynamics of the total

system and obtain continuum equations for both components. Indeed, in superfluids, the well known

continuum formulations of Hall-Vinen and Gorter-Mellink rely on simplified assumptions about the

vortex tangle structure: the former assume it is fully structured, the latter that it is chaotic. In contrast,

numerical computations show that in homogeneous, isotropic turbulence, the actual situation is in

between these two important limits.1 In this work, I model the mesoscopic dynamics of superfluid

vortices by developing a corresponding Langevin equation, and I couple together vortex tangle and

normal-fluid flow by forming a combined Langevin-Navier-Stokes system. By solving it numeri-

cally, I obtain mesoscopic superfluid and normal-fluid velocity fields whose averages correspond to

Hall-Vinen and Gorter-Mellink macroscopic formulations. Understanding the physics of the meso-

scopic flow fields, provides important clues for generalizing these constitutive equations,12 and for

gauging the importance of the vortex induced fluctuation stresses in the macroscopic dynamics.

A. Langevin vortex dynamics

The proposed mesoscopic Langevin dynamics for the superfluid vortex tangle read as follows:

μvẌv − fM − fL − fD − fF = 0. (1)

Here, Xv is the superfluid vortex position, and μv is the superfluid mass per unit length, so that

μvẌv is the inertial force. There is no general consensus on the actual μv values, but according to

the analysis of Baym and Chandler13 μv ≪ 1.

fM is the intervortex force per unit length as given by the standard Magnus force

fM = −ρsκX
′
v × (Vs − Ẋv),

where X′
v is the unit tangent to the vortex contour and Vs is the Biot-Savart velocity field at the

position on a vortex due to all other vortices including the self-interaction term,

Vs(Xv) =
κ

4π

∫

L

(x − Xv) × dx

|x − Xv|3
.

κ = h/m = 9.97 × 10−4 cm2/s is the quantum of circulation, with m being the mass of the particles

comprising the superfluid (here, 4He molecules). Physically, the Magnus force is similar to the

Lorentz force in the magnetostatic interaction between electrically conducting wires. Indeed, κ

acts as an analog electric current (κdXv = (∇ × Vs)dV ↔ (∇ × B)dV = JdV) and Vs as an analog

magnetic field (Vs↔B), hence, a direct analogy between Magnus and Lorentz forces (J × B)

follows. In polymer Langevin equations, the analogs of the Magnus force are the Lennard-Jones and

(entropic) elastic interactions between and within chains correspondingly.

fD is a dissipative viscous drag force, the celebrated mutual friction force of Hall and Vinen,

that depends on the core structure, and couples together normal-fluid and superfluid vortices

fD = −D0X
′
v × [X′

v × (Vn − Ẋv)],

where D0(T) is a temperature dependent coefficient, that has the same units as the dynamic viscosity

([ρ][L]2/[T]). This force is analogous to the Stokes drag force in the theory of polymer and suspension

dynamics.14 The linear dependence of drag on the velocity indicates a very low Reynolds number

(creeping) quasiparticle flow around the vortex core, a fact consistent with the extremely small size

of superfluid vortex cores, a0 = 1.0 × 10−8 cm. Indeed, it is well known that, at higher flow inertia,

the Stokes drag law is not applicable.15

fL is the second term that provides the coupling between Langevin and Navier-Stokes fields. It

is a lift force per unit vortex length due to the Aharonov-Bohm effect for both phonon and roton

parts of the normal-fluid quasiparticle spectrum, as first derived by Iordanskii (and recently rederived
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by Thompson and Stamp16). Due to its topological nature, the lift force does not depend on core

structure, hence scales only with material properties

fL = −ρnκX
′
v × (Vn − Ẋv).

This force ought not to be confused with similar Magnus lift forces in classical hydrodynamics (a

special instance of which is, for example, the Rubinov-Keller force17). The classical lift forces are

a result of pressure asymmetry around the particle surface, which is induced by the rotation of a

particle/vortex immersed in the flow and can be understood qualitatively by applying the Bernoulli

equation. In other words, the hydrodynamic lift force is a finite Reynolds number effect. Therefore,

since, as we argued above, the form of the Hall-Vinen force indicates a creeping flow around the

vortex cores, one expects that a purely hydrodynamic lift force ought to be (in the range of scales

of interest here) negligible in comparison with the dissipative drag. This conclusion is consistent

with the microscopic (quantum field theoretical) computation of Thompson and Stamp.16 They

showed that the viscous lift force tends to zero at large scales and small frequencies (Eq. (53) in

their paper’s supplementary material). So, it appears that two different approaches (microscopic and

hydrodynamic) indicate a negligible (at the mesoscopic scales of interest here) non-Iordanskii vortex

lift force. This also agrees with Sonin’s conclusions in Ref. 18.

fF is the thermal fluctuations force. Its existence can be directly inferred from the fluctuation-

dissipation theorem, as the counterpart of the dissipative fD Hall-Vinen force. According to standard

statistical theory,19 the components fF at any location on the vortex tangle are Gaussian stochastic

variables with mean value zero, and time-correlator 〈fF(t1)fF(t2)〉 = 2D0(kBT/ℓF)δ(t1 − t2), where

ℓF is a length scale above which thermal fluctuation effects become important in vortex motion,

and kB is Boltzmann’s constant. The ℓF scale can be determined via a scaling argument: when

thermal fluctuation effects become important, kBT should be comparable to vortex inertia. By

parametrizing the latter with the vortex mass per unit length and quantum of circulation κ , it

follows that ℓF = μvκ
2/(kB T ). According to this scaling, thermal effects are more effective at

larger vortex radii, since, for very small rings, the corresponding high curvatures result in very high

vortex velocities that overpower thermal fluctuations. In the absence of any conclusive argument

for determining the magnitude of μv , and therefore gauging thermal effects correctly, I neglect the

fluctuation term in the numerical calculations. Notably, Nemirovskii20 has introduced fluctuations

to vortex dynamics, by working at the more microscopic Gross-Pitaevskii equation level. The origin

of fluctuations in Ref. 20 is different: there, the mean field (superfluid) loses energy, which is spent

in exciting the quantum fluctuations of the vacuum state into particles that comprise the normal-

fluid.19 This is the main dissipation process in the superfluid, and together with the accompanying

fluctuations in the number of the excited particles lead to a dissipative, stochastic Gross-Pitaevskii

equation. For comparison, in the mesoscopic dynamics proposed here, the fluctuations originate in

the scattering of existing normal-fluid quasiparticles by the vortex cores.

Before leaving the vortex dynamical part of the model, it must be remarked that some forces

are possibly missing, for example, forces due to the inelastic scattering of quasiparticles by a vortex

because of Kelvin waves excitation (I am grateful to Joe Vinen for indicating this complication),

or entropic forces due to thermal fluctuations at subgrid scales, when computational complexity

constrains the discretization length along the vortices to be much larger than ℓF (an example of such

a force is entropic elasticity in polymers). However, the excellent agreement between the predictions

of the current model and Particle Image Velocimetry data21, 22 suggests that the basic physics are

adequately captured. Definitely, there could be special experiments, where the fluctuating aspects

of the dynamics or even vortex inertia could be manifested and in need of modeling, but this does

not appear (at present) to be the case in available turbulence experiments. Summarizing the vortex

tangle dynamics, one notes the (perhaps surprising) similarities between superfluids and soft matter

physics. The unification of these topics via Langevin dynamics, that I attempt here, could indicate

ways of improving the modeling of superfluid flows via cross-fertilization of these traditionally

separate disciplines. Notably, the key physical quantities of the outlined viewpoint are the normal-

fluid velocity and the superfluid vortex position. The mathematical model primarily incorporates an

intuition about vortex motion, and the superfluid velocity is a secondary, derived quantity.
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B. Vortex reconnections

A crucial limitation of the above Langevin equation is its inability to resolve vortex reconnec-

tions. Indeed, reconnections take place at microscopic (of the order of the vortex core) scales which

are absent in the mesoscopic treatment. This situation is typical in mesoscopic studies of complex

fluids, where (for example) polymer entanglements23 and colloid collisions need to be modeled

phenomenologically at the Langevin equation level. In superfluids, the first such phenomenological

model of vortex reconnection was proposed by Schwarz.8 My method is a close variant of Schwarz’s8

approach. In particular, let {Xi−1
v , Xi

v, Xi+1
v } and {X j−1

v , X
j
v, X

j+1
v } be any two sequences of discrete

vortex points (i − 1 
= i 
= i + 1 
= j − 1 
= j 
= j + 1). The increasing i or j indices follow the vorticity

direction along the contours. In numerical calculations, the discrete vortex points are separated by

the effective cut-off scale δv of Xv-fluctuations which is of the order of the grid size along the vortices

�ξ , �ξ/α < |Xi
v − Xi−1

v | < α�ξ . Here, ξ is the arclength parametrization along the vortices, and

α > 1 is a computational parameter allowing a small variability in the discretization length. In the

computations, α = 1.65. Next, define the intervortex spacing scale δiv =
√
Vs/L = �−1/2 (with Vs

the system volume, L the vortex tangle length, and � = L/Vs the vortex line density). Hence, the

reconnection algorithm and the accompanying topological change becomes

{Xi−1
v , X

i
v, X

i+1
v } ∧ {X j−1

v , X
j
v, X

j+1
v } ∧

[

|Xi
v − X

j
v | < β min(�ξ, δiv)

]

−→

{Xi−1
v , X

i
v, X

j+1
v } ∧ {X j−1

v , X
j
v, X

i+1
v }. (2)

The difference between Schwarz’s8 method and the present one is the inclusion of the δiv scale in

the reconnection criterion. This is deemed necessary when very dense tangles are produced in a

computation (as is always the case in turbulence), in order to avoid the proliferation of spurious

reconnections. β is an important, smaller than unity, computational parameter (β = 0.3 in the

present calculations). It controls two crucial physical effects: (a) the rate with which reconnections

are occurring, that is, the smaller the β, the smaller the reconnection rate, and (b) the rate with

which reconnections remove vortex length from the tangle. The latter is a desirable feature, since

(during reconnections) vortex kinetic energy is transformed into acoustic energy which (via the

mixed fluctuation/mean-field terms in the governing equation for the mean quantum field value)

create particles in the normal-fluid. Certainly, the physics of such processes are not modeled in

the incompressible vortex dynamics of the present Langevin equation, thus removing vortex length

during reconnections is a phenomenological, albeit crude, way of mimicking the above microscopic

quantum mechanical process. In addition, another source of vortex length loss in the calculations

is the removal of rings with three or less vortex points from the system. That the combination of

the above reconnection model with the particular α and β values work as expected in practice was

shown in Ref. 24. Indeed, in this work, in order to keep a constant tangle length during a T =
0 K computation, thus, to compensate for reconnection induced losses, an energy injection into the

system in the form of superfluid vortex rings had to be applied. A systematic investigation of these

and similar issues is available in Ref. 25.

C. Navier-Stokes fluid dynamics

In order to complete the physical model, the Navier-Stokes dynamics for the normal-fluid need

to be introduced. These are quite standard, apart from the added forces that couple the normal-fluid

with the superfluid vortices, and are the exact opposites of the fL, fD forces acting on the latter

∇ · Vn = 0,

∂Vn(x, t)

∂t
+ ∇

(

p

ρn + ρs

+
Vn · Vn

2

)

− Vn × (∇ × Vn) −
μ

ρn

∇2
Vn −

κ

∫

L

dξ [X′
v × (Vn − Ẋv)]δ(x − Xv) −

D0

ρn

∫

L

dξ{X′
v × [X′

v × (Vn − Ẋv)]}δ(x − Xv) − (ǫ/3V 2
n )Vn = 0. (3)
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Here, p(x, t) signifies the scalar pressure field that enforces incompressibility, ǫ = −ν〈Vn · ∇2Vn〉 is

the rate of kinetic energy dissipation, V 2
n = 1

3
〈Vn · Vn〉 is the mean square of turbulence fluctuations,

and ν = μ/ρn is the kinematic viscosity of the normal-fluid. The delta functions are employed to

indicate that the coupling between normal-fluid and vortex tangle takes place exclusively along

vortex contours. It is important to note here that the fourth, fifth, and sixth terms have in front a

coefficient with units of kinematic viscosity. Due to the dissipative nature of the sixth (Hall-Vinen)

force, it is appropriate to call D0/ρn ≡ λ the “mutual-friction viscosity” acknowledging that it could

simply be a “renormalized” version of the standard kinematic viscosity ν. Equally important, since

the fifth term is not dissipative in nature, it scales with the quantum of circulation that is connected

to inertial aspects of the superfluid vortices. Indeed, κ is a constant “vortex current” that allows the

vortex to sense/interact with the normal-fluid flow. Consequently, the actual value of κ gauges the

coupling between vortices and flow in the same fashion that gauges the coupling of vortices with one

another (and themselves) in the Magnus term of the Langevin equation. Therefore, in addition to the

standard Reynolds number Re = U*D*/ν that gauges inertia against viscous forces, one can define

two more nondimensional numbers, U*D*/κ that compares normal-fluid inertia with the Iordanskii

force, and U*D*/λ that gauges normal-fluid inertia against the mutual-friction force. As a result, by

performing a harmless redefinition of the pressure p/(ρn + ρs) → p, one can scale the normal-fluid

equation with three nondimensional numbers. The last term of the equation (also known as Lundgren

force)26–28 is a force that mimics the injection of energy in a normal-fluid turbulent flow. In real-life

situations, there are many ways to stir up a fluid, for example, by having it interact with a solid or

a gravitational/electromagnetic field. The Lundgren force is a method for achieving a controllable

injection of energy in a turbulent flow without unnecessary real-life complications. It has been

shown1, 27, 28 that the Lundgren force is consistent with Kolmogorov’s inertial range energy spectrum

scaling so it does not “contaminate” the statistical structure of normal-fluid turbulence. This force

is introduced in the Navier-Stokes equation for the following reason: the structure of pure normal-

fluid turbulence is identical to that of turbulence in a simple-fluid, which is a topic of numerous

investigations and many of its aspects are very well understood. In superfluids, it is the physics of the

coupling between normal-fluid and superfluid vortices that is the great unknown, in particular in the

context of their effects on both normal-fluid turbulence and superfluid vortex tangle structure. So,

there is a need to isolate the effects of the mutual-friction and lift coupling forces on the energetics

of normal-fluid turbulence, and this is the sole purpose of the Lundgren force here. Its function is

to inject, at each time instant, the exact amount of kinetic energy that is dissipated by the ν∇2Vn

term. Thus, since the other (non-coupling related) forces in the Navier-Stokes equation conserve

energy, any normal-fluid energy dynamics in the computations are due entirely to its coupling with

the vortices, and the energy transfer between the two subsystems because of their coupling can be

explicitly demonstrated. Moreover, since the Lundgren force does not alter spectral scalings,1, 27, 28

any normal-fluid turbulence deviation from standard simple-fluid turbulence physics can be safely

attributed to the effects of the mutual-friction and lift force couplings.

III. NUMERICAL RESOLUTION, METHODS, AND CODES

I discuss the design of finite temperature superfluid computations from the points of view of

spatial and temporal resolution, fluid and vortex numerical methods, as well as key algorithmic

difficulties.

A. Spatial and temporal resolution

Setting up well resolved, finite temperature, superfluid turbulence calculations is not a trivial

task. There are a number of new scales not present in simple-fluid turbulence, and one needs to

consider carefully the resolution of both normal-fluid velocity and superfluid vortex fluctuations, in

order to capture all important physics. There are three important scales in the system: the cut-off scale

δf of normal-fluid velocity fluctuations, the cut-off scale δv of vortex contour fluctuations, and, in

numerical calculations, the regularization scale δδ of the mutual friction and lift-force delta-functions
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in the Navier-Stokes equation. Since the smoothing of the delta-function singularities introduces a

de facto effective cut-off scale δδ in the dynamics, the resolution of all important physics is possible

if, and only if, δδ < min(δ f , δv). The key question then is what is δf and δv?

The combination of Langevin dynamics and reconnection model allows the description of a key

dynamical vortex tangle process, the Kelvin wave cascade. In particular, the collision of superfluid

vortices and their subsequent reconnections induces contour waves along the filaments (Kelvin

waves) which cascade kinetic energy from the reconnection scale (of the order of the curvature of

the reconnecting vortices) to smaller scales.29–33 In an inviscid, incompressible, pure superfluid, the

Kelvin waves cascade would extend all the way to the vortex core, but actual superfluid vortices are

compressible, so, as they fluctuate, they radiate sound and lose their kinetic energy.34 At very low

temperatures, sound radiation would be the dominant damping process, but in the temperatures of

interest here, there is also dissipative mutual friction action which leads to higher δv values than

those expected on the grounds of sound emission alone. The calculation of Ref. 35 is instrumental in

this respect: there, an initially stationary normal-fluid at T = 1.3 K self-consistently interacts with a

tangle of (initially) randomly oriented superfluid vortices. The reconnections that occur in the tangle

generate strongly damped Kelvin waves, and a fractal tangle geometry. Since the normal-fluid is

forced by mutual-friction along a complicated, fractal contour, it develops fluctuations itself. The

latter are characterized by very small Reynolds number, Re ≈ 10−3, and their energy spectrum scales

like k−2.2 terminating at a cut-off scale of the same order as the superfluid intervortex distance δiv .35

Indeed, in Ref. 35, the intervortex distance wavenumber is kδiv
≈ 277 cm−1, and coincides with the

end of the normal-fluid spectrum. It is important to note here, that this is a genuine cut-off since

the smallest wavenumber resolved in the calculation is k = 641 cm−1. This implies that the Kelvin

waves cascade is damped at about δv = δiv , a conclusion supported further by the very smooth vortex

contours (Fig. 3 in Ref. 35). Indeed, the cascade does not extend well beyond δiv , because, in this

case, the Kelvin waves would have excited normal-fluid fluctuations there, instead of the observed

cut-off. Noting that the Kelvin waves cascade is expected to start at the curvature scale typical of

reconnections, and taking into account that in dense tangles, as that in Ref. 35, the reconnecting

scale is of the order of δiv , one concludes that the Kelvin waves cascade is damped by mutual friction

at about the scale of its generation. A second, equally important conclusion drawn in Ref. 35 is

that, in contrast to turbulence in simple-fluids, the sub-turbulence normal-fluid velocity scales are

not smooth, but are characterized by small Reynolds number fluctuations that terminate at a cut-off

scale of the same order as the superfluid intervortex distance (which can be much smaller than the

smallest scale of turbulent/inertial fluctuations in the normal-fluid).

The above allow a self-consistent, physically sound design of finite temperature superfluid

turbulence computations as follows: choose a numerical discretization length �x for the Navier-

Stokes equation taking into account computational complexity limitations. Then, for consistency,

choose δδ = �x (δf ≥ �x). When deciding the Taylor Reynolds number for normal-fluid turbulence,

ensure that the Kolmogorov scale η in the initial turbulent velocity field is η > �x. In this way,

not only the range of scales of turbulence/vortex-tangle coexistence is well resolved, but there is

also available a computational scale-range for resolving the sub-turbulence low Reynolds number

normal-fluid fluctuations of Ref. 35. Capturing the latter regime is a good indication that a superfluid

turbulence calculation is well resolved. Next, choose the superfluid discretization length along the

filaments �ξ (where ξ is the arclength parametrization along the vortices) to be �ξ = �x =
δδ (δv ≥ �ξ ). This is because there is no reason to resolve the vortex contours (and associated

Kelvin waves) at scales smaller than the δδ regularization scale, since there are no normal-fluid

dynamics at those scales for the Kelvin waves to interact with. Certainly, since the sub-turbulence

low Reynolds number, normal-fluid fluctuations terminate at the intervortex scale δiv , i.e., δ f ≈ δiv ,35

and δv ≈ δiv ,35 one ought to suspend the computation when δiv ≈ δδ so that the calculations do not

become under-resolved. In summary, when setting turbulence calculations in this way, one captures

all relevant dynamical regimes and only the attainable superfluid vortex tangle densities are limited.

Indeed, both turbulent and low Reynolds number fluctuations in the normal-fluid are resolved, and

the superfluid vortex tangle is allowed to form any large scale organization/pattern, and develop

Kelvin waves cascade at smaller scales. In this respect, the self-consistency of physics and numerics

also needs to be stressed, since as discussed in Ref. 36, the numerical vortex dynamical method
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introduces a cut-off of superfluid velocity at the scale �ξ , which is harmless if, and only if, it is

assured that �ξ ≤ δv , which is what this setup achieves.

Regarding time resolution of normal-fluid flow, it is not adequate to resolve only the turbu-

lent normal-fluid fluctuations. One also needs to resolve the low Reynolds number fluctuations of

Ref. 35, and this demands a viscous time step, i.e., �t ≤ min(min[γ�x/Vn(x)],�x2/6ν), where γ

is the CFL number. The superfluid physics also impose restrictions on the time step, by the need to

resolve the fastest Kelvin waves on the vortices. Since the smaller a Kelvin’s wave wavelength, the

faster it propagates, only the smallest Kelvin waves need to be considered. These have wavelength

λK = 2�ξ , and their group velocity follows from the general formula VλK
= (κ/2λK )log(λK /2πa0).

Then �t ≤ λK /VλK
. In the calculations presented here, the normal-fluid time step is the more

restrictive one.

B. Numerical methods and algorithms

I employ a standard, projection method for the Navier-Stokes equation.36 The non-standard

element is the smoothing of the delta function singularities in the coupling terms, and this is achieved

with the use of Heaviside functions.1 For the vortices, I renormalize the self-interaction velocity

divergence in the Biot-Savart law by employing the velocity of a ring with radius the local radius of

curvature, and apply the method of Winckelmans and Leonard for evaluating velocity contributions

because of all other points.37 For the latter, an effective vortex core radius equal to �ξ is employed.37

As remarked earlier, in the numerical analysis of vortex dynamics, thermal fluctuation effects are

neglected. In addition, high frequency vortex oscillations are not of interest, and are not resolved. In

other words, the vortex dynamics are solved in the (so called) diffusive limit, that is, with numerical

time steps �t ≫ τR, where τR = μv/D0 is the inertial relaxation time scale. In this way, without

compromising physical accuracy, one overcomes the problem with the uncertainty in the μv values,

since, in the diffusive limit, vortex inertia can be neglected, and one can use the vortex dynamical

scheme introduced in Ref. 38 and further modified in Ref. 1. Finally, in contrast to the Navier-Stokes

part, the algorithms of the vortex dynamical part are difficult exercises in computational geometry.

In writing code for reconnecting dynamics, emphasis must be placed from the outset on having the

correct data structures. Detecting and performing reconnections is a demanding algorithmic task,

because it is accompanied by changes in the tangle topology and the number of vortices in the

system. It is best if extensive tests of such algorithms are performed before undertaking any actual

physics computations.

IV. SETTING UP A FINITE TEMPERATURE SUPERFLUID TURBULENCE

The working fluid is superfluid 4He at T = 1.3 K. The values of the various experimental

material properties/parameters are available in Ref. 1. The computational domain is a periodic cube

of size lb = 0.1 cm, thus, the size of the largest resolved eddies is le ≈ 0.5 × lb. Within this domain,

we set up a steady state, homogeneous, isotropic normal-fluid turbulence with Reynolds number

Re = Vnle/ν = 612 (the turbulence intensity Vn = 28.52 cm s−1). This steady state is established in

a separate, pure normal-fluid computation, where an initially random normal-fluid velocity field with

Gaussian statistics39 is allowed to evolve under Navier-Stokes dynamics whilst the Lundgren force

injects kinetic energy at a specified, constant rate.27, 28 The level of energy injection is determined

by the value of the targeted steady state Taylor Reynolds number. The latter, in turn, is dictated

by combined computational complexity considerations, since, in a superfluid computation, the

demanding resolution of fully developed normal-fluid turbulence is only partially responsible for the

computational load, and one needs to correctly anticipate the size of the superfluid vortex problem

too, in order to design manageable computations. Employing the relation λ/ le =
√

15Re−1/2, where

λ is the Taylor microscale, one finds Reλ = 95. I employ an 1283 computational mesh, i.e., the grid

size is �x = 0.781 × 10−3 cm which corresponds to wavenumber k�x = 1280. The scaling relation η

≈ le/Re3/4 suggests η ≈ 0.4063 × 10−3 cm for the Kolmogorov scale. Comparing η with δx indicates

a well resolved turbulence computation, a conclusion supported by the computational results. As

discussed in Sec. III, I choose δδ = �x, and �ξ = 2�x. Moreover, since the smallest intervortex
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spacing scale δiv recorded in the computations is δiv = 2.18 × 10−3 cm > �x, the numerical setup

is adequate for the resulting flow. This is also verified by the computational results, which indicate

that the k−2.2 scaling regime of Ref. 35 is adequately resolved. The initial state of the superfluid

vortex tangle consists of 40 rings randomly oriented and positioned within the box. Their radii are

randomly distributed between rmax = 0.25lb and rmin = 0.75rmax = 0.1875lb. Notably, as verified in

numerous computations of superfluid turbulence, the results do not depend on the initial conditions

in the superfluid, since the tenths of thousands of reconnections that occur during the computation

(in combination with the random character of the turbulent normal-fluid velocity) create fast a

homogeneous, superfluid vortex tangle. Hence, the initial conditions provide only a reasonable

vortex configuration in order to start the computation. Notably, the large-eddy turnover time in the

normal-fluid is of the order of τe = le/V n = 0.175 × 10−3 s, thus, taking into account that the total

computation time is tf = 0.0619 s, we have tf ≈ 35τ e. The typical time step in the computations is

of the order �t ≈ 10−6 − 10−5 s.

V. DECAYING FINITE TEMPERATURE SUPERFLUID TURBULENCE

The results reveal the spectral structure of turbulence in the two fluids. Some of the resulting

scaling laws do not have the desirable, large extension in wavenumber range because, due to

computational complexity, it is not realistic, at present, to compute very large systems. Nevertheless,

by putting together physical arguments, and by combining the present results with other previously

obtained ones, I provide here an account of normal-fluid and superfluid energy scalings in finite

temperature quantum fluids. This account is going to be systematically examined in future, more

potent, massively parallel computations. Notably, the introduction of the Lundgren force, does

not allow the flow to decay under the combined action of viscous dissipation and acoustic radiation

mechanisms. Because of this, I do not draw any conclusions in this work about the temporal structure

of turbulence. All conclusions involve spectral analysis of the spatial structure, which is computed

from first principles, and is not deformed by the Lundgren force. The resulting conclusions are

applicable to the spatial structure of all homogeneous, isotropic, superfluid turbulence flows. Thus,

it applies to counterflow turbulence only when the mean flow does not cause drastic departures from

isotropy in the vortex tangle, and is relevant to vibrating-object generated turbulence, insofar as the

latter occurs at finite temperatures.

A. Evolution of global quantities

As shown in Fig. 1 (left), the initial condition for the normal-fluid presents a low k Kolmogorov

k−5/3 regime. The initial superfluid velocity is negligible in comparison with the normal-fluid velocity,

FIG. 1. Left: Initial energy spectrum En(k) of the homogeneous isotropic turbulence in the normal-fluid. A Kolmogorov

k−5/3 scaling regime (straight line) is observed over a decade in wavenumber space. Evidently, the dissipation regime of the

spectrum is also well resolved. Right: Decaying normal-fluid kinetic energy En and growing superfluid vortex tangle length

L versus time. The straight horizontal line shows En in an accompanying computation, where the superfluid is not allowed to

react back on the normal-fluid (and viscous action is counterbalanced by the Lundgren force).
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and this is also the case for the superfluid kinetic energy, despite the density ratio ρs/ρn = 21.257, for T

= 1.3 K. Indeed, defining a normal-fluid eddy circulation Ŵℓ/ν = Reℓ, where Ŵℓ is the circulation of an

eddy of size ℓ and Reℓ is the corresponding Reynolds number, it follows Ŵℓe
= 1430κ (Reℓe

= 612),

and Ŵℓη
= 2.33κ (Reℓη

= 1). κ = 9.97 × 10−4 cm2/s is the quantum of circulation. Evidently, the

large normal-fluid eddies are much more energetic than the superfluid ones. At t = 0, the two

fluids start interacting via mutual-friction and lift forces. After an initial transient (Fig. 1, right),

the normal-fluid energy decays linearly in time, until, following a second transient, it relaxes (close

to the final time tf = 0.0619 s) to an asymptotic low Reynolds number state. This normal-fluid

energy decay is a purely mutual-friction, lift-force effect, because, according to the logic of the

setup, the viscous losses are completely counterbalanced by the action of the Lundgren force. In

order to demonstrate this point, I also show in Fig. 1 (right), the results of a normal-fluid calculation

without any coupling to the superfluid. Evidently, the Lundgren force acts as expected, keeping the

normal-fluid energy approximately constant. It is important to compare the strength of the effects

of coupling forces with the strength of the effects of viscous forces. For this purpose, I have also

allowed the t = 0, pure normal-fluid turbulence state to decay from its initial condition because of

viscous action only. According to the results, the coupling forces need nine times more time than the

viscous forces, in order to remove 90% of the initial kinetic energy. Intuitively, this is understood

by noting that mutual-friction is proportional to normal-fluid velocity values, but viscous force is

proportional to their second derivatives (which are expected to be much larger, since turbulence

fluctuations are characterized by large velocity gradients). These indicate a weak coupling between

the two fluids in comparison with the other terms in the Navier-Stokes equation. Indeed, the coupling

forces are weaker than the viscous forces, which, in turn, are much weaker than the inertial and

pressure gradient terms for Reℓe
= 612. The superfluid has similar with the normal-fluid physics,

i.e., inertial forces whose strength scales with the quantum of circulation, and the mutual-friction and

lift force couplings that pump energy into it. The important difference is that, instead of the viscous

dissipation that transforms kinetic energy into heat in the normal-fluid, there is sound emission from

vortex vibrations that transforms kinetic energy into acoustic energy in the superfluid. This energy

sink is not included in the analytical vortex dynamics, and is modeled at the computational level via

length loss due to reconnections, and small vortex ring removal. Therefore, at every time-instant, the

normal-fluid loses energy to the superfluid because of their coupling, whilst the superfluid gains the

energy transfered from the normal-fluid, whilst losing energy due to reconnections-induced vortex

length reduction.

A key observation is that the two fluids reach a final state with very low energy levels in the

normal-fluid. The initial normal-fluid kinetic energy is spent in order to eventually create a dense

chaotic vortex tangle that coexists with a low Reynolds number normal-fluid flow, similar to the

vortex tangle and flow of Ref. 35. Notably, as discussed at great length below, this effect does not

exclude a transient, i.e., at an earlier time, organization of the vortex tangle at low k, where the

inertial range of the normal-fluid resides. Such an organized vortex tangle at low k that comes into

kinetic equilibrium with the normal-fluid at the same scales cannot be a stationary solution of the

dynamics. This is because vortex reconnections spent superfluid kinetic energy, and since this loss

is not compensated, it drives superfluid energy towards smaller values. This leads to further transfer

of energy from the normal-fluid to the superfluid, until the k-extension of the inertial range in the

normal-fluid is diminished, and with it also the organization of the vortex tangle, leaving behind the

final chaotic tangle state of Ref. 35. At even later times, the continuous (reconnection related) sink

of total energy will eventually drive the whole system into a quiescent state with no vortices, zero

normal-fluid flow, and higher temperature. Notably, in a similar fashion with the incompressible

dynamics of simple-fluids, the heating of the quantum fluid is not accounted for in the incompressible

dynamics that we solve here.

B. Spectral analysis of normal-fluid turbulence

The normal-fluid spectra are shown in Fig. 2 (left). In order to indicate the progressive reduction

of the k-extension of the Kolmogorov regime with time, I have superimposed the spectra at various

times, matching the low k energy levels by multiplying them with appropriate factors (reported in
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FIG. 2. Left: Superimposed normal-fluid energy spectra at times t = 0, t = 0.0262 s, t = 0.0363 s, and t = 0.0619 s (right to

left). In order to match the low wavenumber energy levels, I multiplied later time spectra by the factors 1.7, 5, and 180. The

straight line indicates the slope of Kolmogorov’s k−5/3 scaling. As the normal-fluid loses its kinetic energy via its coupling

to the superfluid, its inertial range extension in k-space shrinks towards low k. The corresponding (t − kδiv
) pairs are: (0, 71),

(0.0262, 293), (0.0363, 405), (0.0619, 453). Right: Normal-fluid spectra at t = 0.0262 s and t = 0.0619 s. In contrast to the

t = 0.0262 s case, the t = 0.0619 s spectrum does not present a substantial inertial range. There is an intermediate, steep,

k−6 viscous scaling regime, that bridges the more energetic large scale eddies with a low Reynolds number fluctuating flow

exhibiting a k−2.2 energy scaling.35

caption). At t = 0, a low k Kolmogorov regime over a decade is observed. Since the mutual-friction

force is proportional to the normal-fluid velocity, its physics can be expected to be similar, in many

respects, to the physics of the Lundgren force. The Lundgren force pumps energy in the normal-

fluid whilst preserving its energy spectral scaling, and, according to the results, mutual-friction is

removing energy whilst also preserving the energy scaling. Indeed, at t = 0.0262 s, i.e., well into the

linear (normal-fluid) energy decay period, the Kolmogorov scaling regime remains intact (modulo

an overall decrease in energy levels). Moreover, since mutual-friction effects are much weaker than

inertial effects (because mutual-friction is weaker than the viscous force and the Reynolds number

is high), the physics of the inertial range in the normal-fluid are not expected to differ greatly from

the physics of simple-fluid turbulence. Hence, the persistence of strong normal-fluid nonlinearity at

low k implies vortex stretching, and the existence of small scale, high enstrophy normal-fluid vortex

tubes that generate superfluid vortex length dynamos,37 whilst getting damped in the process. This

effect is demonstrated in Fig. 3. As shown in Ref. 37, these dynamos include the generation of spiral-

like superfluid vortices around the small scale normal-fluid tubes, and of aligned, superfluid vortex

bundles within them. The latter effect is much weaker than the former. The spiral vortices originate

in vortex instabilities that grow, due to the coupling forces, to large radii that are comparable to the

size of the large eddies in the normal-fluid. This large scale growth of superfluid vorticity is the

physical mechanism responsible for mutual-friction induced energy removal from the normal-fluid.

The self-similar decay continues until the Reynolds number in the normal-fluid cannot support

a Kolmogorov regime any further. Indeed, at t = 0.0363 s, the inertial range’s extension in k space

starts diminishing fast, and the flow enters a transient towards a low Reynolds number flow. When,

at t = 0.0619 s, this transient is over, there is no Kolmogorov regime in the normal-fluid spectrum.

Instead, both fluids find themselves in a low kinetic energy state. This state is none other than the

flow of Ref. 35, since, as discussed in Sec. III A, in every normal-fluid turbulent flow there are

sub-turbulence fluctuations with a k−2.2 energy scaling. These fluctuations comprise a low-Reynolds

number flow generated in a normal-fluid by a more energetic superfluid, and are characterized by

the triple vortex structures of Ref. 40. Indeed, since turbulent normal-fluid fluctuations have a steep

high k cut-off, one can always find a large enough k where the superfluid (because of its vortical

topological defects) is more energetic than the normal-fluid. It should be stressed, that the non-trivial

low Reynolds number normal-fluid flow structure is not an inertial effect, and its apparent complexity

is solely due to the forcing of the normal-fluid along a fractal vortex tangle contour.35, 41 As the

normal-fluid turbulence cut-off shifts to lower k in Fig. 2 (left), the creeping flow regime becomes

more noticeable, and its k−2.2 scaling is evident at t = 0.0619 s, Fig. 2 (right). At the same time, an
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FIG. 3. Isosurfaces of intense normal-fluid vorticity (red tubes) and superfluid vortices (green lines) at t = 0.0113 s (left) and

t = 0.0262 s (right). The earlier time results refer to the initial transient stage before the period of linear normal-fluid energy

decay. The subsequent growth of superfluid vorticity damps the intense, small scale vorticity structures in the normal-fluid.

intermediate viscous spectrum regime with a steep k−6 scaling appears in between the now-defunct

inertial and creeping flow regimes.

C. Spectral analysis of superfluid turbulence

As discussed in Sec. III A, the Kelvin waves cascade appears to be damped close to the in-

tervortex scale δiv . This conclusion is indicated by the results in Ref. 35, where the normal-fluid

sub-turbulence fluctuations terminate at δiv indicating no significant superfluid structure beyond this

scale, a conclusion also supported by the accompanying smooth vortex contours (Fig. 3 of Ref. 35). In

the adjacent larger scales, the superfluid vortices interact with the high enstrophy vortex tubes in the

end of the normal-fluid inertial range as discussed in Ref. 37. The latter work showed that the polar-

ization of superfluid turbulence within vortex tubes, first reported in Ref. 42 and analysed further in

Refs. 30, 43, and 44, is weak compared to the dominant process of spiral-like superfluid vortex for-

mation outside the normal-fluid tubes. The latter process can explain the observed spectral scalings

in Fig. 4 as follows: Superfluid vortices become unstable when they interact with intense, normal-

fluid vorticity regions. Calculations in Refs. 1, 37, and 45 show that such instabilities grow to large

scales, because of coupling-forces action on the vortices. Both1, 37 report that the spectral energy

scaling corresponding to these instabilities (and the resulting spiral-like vortex structures) is k−3.

The results of Ref. 1 also indicate that this scaling coexists in k space with the Kolmogorov regime

in the normal-fluid. On the other hand, it was shown in Ref. 45, that, during instability growth,

the superfluid vortices tend to agglomerate in between the normal-fluid tubes. This result is fully

consistent with the nature of the forces acting on the superfluid vortices. In particular, the superfluid

vortex model dynamics share basic features with the dynamics of suspensions of inertial particles,

i.e., particles that do not follow the flow. Indeed, although inertia can be neglected in the Langevin

model, it does not follow that, on time scales of the order of the relaxation time scale τR = μv/D0,

the superfluid vortices move with the normal-fluid velocity like passive tracers. This is because, in

addition to the mutual-friction force that tends to equalize normal-fluid and vortex velocities, there

are also intervortex-Magnus and lift forces on the vortices, as well as, reconnections. The effects

of these dynamical factors result in a slip between the normal-fluid velocity and the velocity of the

vortices. But in such cases, that is, in cases when suspended particles/vortices slip relative to the

fluid, applies a well known result in suspension studies, i.e., that particles tend to accumulate in

between the high vorticity regions in the fluid.46 This is exactly what happens in finite temperature

superfluids too.37, 45 The agglomeration of superfluid vortices in between the normal-fluid vortex

tubes (in areas of low normal-fluid velocity as indicated in Ref. 37) leads to the emergence of weakly
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FIG. 4. Superfluid energy spectra at t = 0.0262 s (bottom curve) and t = 0.0619 s (top curve). The t = 0.0262 s spectrum

shows a clear-cut k−5/3 regime, followed by a steeper k−3 range.1, 37 Both scalings coexist with the Kolmogorov regime in the

normal-fluid, and appear well above the intervortex spacing scale. At t = 0.0619 s, the energy levels are too small to support

the k−5/3 regime, and only the k−3 is discernible. The corresponding (t − kδiv
) pairs are: (0.0262, 293), (0.0619, 453).

polarized bundles of superfluid vortices. The latter give rise to a Kolmogorov like k−5/3 regime in

the superfluid coexisting with the Kolmogorov range in the normal-fluid. This scaling is clearly

indicated in the superfluid energy spectrum at t = 0.0262 s (Fig. 4). The calculation shows that the

k−5/3 regimes in both fluids vanish at the same time, thus, the normal-fluid inertial range, with its

coherent vortex structures,45 is an essential prerequisite for the emergence of the k−5/3 regime in the

superfluid. In a sense, the Kolmogorov-type spectrum in the superfluid is the result of vortex growth

termination, as vortices emanating outwards from different instability centers (which are coherent

vortical structures within the normal-fluid’s inertial range) collide with each other and agglomerate,

in a process reminiscent of caustics formation in particulate suspensions.47 This also explains why

both k−5/3 and k−3 superfluid scalings coexist with the inertial range in the normal-fluid: the coher-

ent structures in the latter are responsible for both the growth of instabilities (k−3 scaling) and its

termination (k−5/3 scaling).

Results on the magnitudes of the various forces indicate that the dynamics of the superfluid

vortices are dominated by the coupling forces. There can be stretching of the weakly polarized vortex-

agglomerates in the superfluid, but the magnitude of these effects is orders of magnitude smaller

than the magnitude of mutual-friction effects. Indeed, the latter plays the key role in superfluid

vortex clustering and the emergence of polarization. Due to its importance, it is worth elaborating

upon this point: Consider the standard formulas9 for the “potential energy” per unit length E(r )

of two straight, parallel superfluid line vortices, positioned within a cylinder of radius δiv/2 and

separated by distance r ≫ a0. In case their vorticities point in the same direction (“parallel vortices”),

E(r ) = (ρsκ
2/2π )ln(δ2

iv/4a0r ), and in case they point in opposite directions (“antiparallel vortices”),

and r ≪ δiv , E(r ) = (ρsκ
2/4π )ln(r/a0). It follows directly that parallel vortices repel each other,

i.e., the larger their distance r the smaller the energy of the system, whilst antiparallel vortices attract

each other. Evidently, the production (of even weakly) polarized superfluid vorticity bundles45 needs

external work which is provided here by the mutual-friction and lift-force couplings. Remarkably,

in pure superfluid turbulence, without coupling forces, and without the large reservoir of normal-

fluid kinetic energy, the spontaneous emergence of vortex bundles and associated vortex stretching

physics with a Kolmogorov inertial range seems unlikely in the context of this analysis. Notably, this

argument does not necessarily exclude a k−5/3 scaling in a pure superfluid, for the latter can appear

for other than vortex-bundle stretching reasons. The k−3 regime survives the destruction of the k−5/3

regime at the later, time t = 0.0619 s, and coexists in k space with the previously mentioned, steep,

k−6 intermediate scaling in the normal-fluid. Both scalings occur at significantly lower wavenumbers

than the intervortex spacing scale wavenumber kδiv
= 453. Finally, I have indicated a k−1 scaling at

high k (Fig. 4). Since the Kelvin waves cascade appears to be damped at δiv , the k−1 spectrum does

not correspond to the k−1 Kelvin wave cascade scaling derived with dimensional analysis in Ref. 30

and calculated with numerical methods in Ref. 31. Rather, it must correspond to the probing of the
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velocity field of isolated vortex filaments,31 especially since it appears below the intervortex space

scale wavenumber kδiv
.

VI. EPILOGUE

The mesoscopic Langevin model proposed here, embeds finite temperature superfluids within

the general category of complex fluids. This point of view can have many advantages, leading,

for example, to a better understanding of the agglomeration of superfluid vortices in between the

normal-fluid vortices, a well known/studied phenomenon in suspensions. More importantly, the

mesoscopic model allows the analysis of phenomena not tractable within the framework of standard

superfluid vortex dynamics, such as Brownian motion effects or very fast, inertial, vortex relaxation

processes. Advanced numerical methods for complex fluids in general, and Langevin equations in

particular, could also eventually be applied to superfluids.

The interplay of numerics with physics is the major concern in the proposed methodology

for the design of well resolved numerical calculations of finite temperature superfluids. It relies

on the crucial observation of apparent Kelvin wave cascade damping in fully coupled normal-

fluid/superfluid calculations. Therefore, a better resolved (perhaps also with more accurate numerical

methods) computation of the flow in Ref. 35 is a desirable immediate development. New advances

in numerical vortex dynamics48 can also inform computational work in superfluids, especially in the

context of the systematic desingularization of the superfluid-vortex Biot-Savart integral.

Regarding the fecund spectral structure of finite temperature superfluids, the computed low

k, k−5/3 spectra in both fluids are consistent with previous experimental conclusions.49, 50 In this

context, it would be highly desirable if the metastable Helium molecules technique of Ref. 51 could

evolve to the point of resolving and measuring actual normal-fluid spectra. This would be a true

major step ahead in superfluid hydrodynamics research. Another key development would be the

design of massively parallel algorithms that could push to higher values the Reynolds number in the

normal-fluid and vortex tangle densities in the superfluid. Moreover, by increasing the numerical

resolution along the vortices, it will be possible to directly investigate the damping of the Kelvin wave

cascade within a fully developed turbulence computation, rather than referring to the specialized

computation results of Ref. 35. The implementation of computational operators that educe superfluid

vortex polarization in the k−5/3 energy scaling regime of a complex vortex tangle is also of central

importance. Approaches based on Minkowski functionals,52 for example, can be very suitable for

this purpose.
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