20,779 research outputs found

    Two-Particle Schroedinger Equation Animations of Wavepacket-Wavepacket Scattering (revised)

    Full text link
    A simple and explicit technique for the numerical solution of the two-particle, time-dependent Schr\"{o}dinger equation is assembled and tested. The technique can handle interparticle potentials that are arbitrary functions of the coordinates of each particle, arbitrary initial and boundary conditions, and multi-dimensional equations. Plots and animations are given here and on the World Wide Web of the scattering of two wavepackets in one dimension.Comment: 13 pages, 8 figures, animations at http://nacphy.physics.orst.edu/ComPhys/PACKETS

    Scout motor performance analysis and prediction study /PAPS/

    Get PDF
    Scout motor performance analysis and predictio

    ALLY: An operator's associate for satellite ground control systems

    Get PDF
    The key characteristics of an intelligent advisory system is explored. A central feature is that human-machine cooperation should be based on a metaphor of human-to-human cooperation. ALLY, a computer-based operator's associate which is based on a preliminary theory of human-to-human cooperation, is discussed. ALLY assists the operator in carrying out the supervisory control functions for a simulated NASA ground control system. Experimental evaluation of ALLY indicates that operators using ALLY performed at least as well as they did when using a human associate and in some cases even better

    Holes in the walls: primordial black holes as a solution to the cosmological domain wall problem

    Full text link
    We propose a scenario in which the cosmological domain wall and monopole problems are solved without any fine tuning of the initial conditions or parameters in the Lagrangian of an underlying filed theory. In this scenario domain walls sweep out (unwind) the monopoles from the early universe, then the fast primordial black holes perforate the domain walls, change their topology and destroy them. We find further that the (old vacuum) energy density released from the domain walls could alleviate but not solve the cosmological flatness problem.Comment: References added; Published in Phys. Rev.

    Special Problems Faced by the Elderly Victims of Crime

    Get PDF
    Recently, increased attention has been paid to the problems faced by the elderly within our society. One of the most pressing problems is the threat of crime, This article examines the actual risk of criminal victimization among the elderly, the physical, financial, and psychological consequences of victimization, and the special problems faced by the elderly as they attempt to deal with the criminal justice system. Finally, their fear of crime, which in itself constitutes a very real form of victimization, is explored

    Evolution of Primordial Black Hole Mass Spectrum in Brans-Dicke Theory

    Full text link
    We investigate the evolution of primordial black hole mass spectrum by including both accretion of radiation and Hawking evaporation within Brans-Dicke cosmology in radiation, matter and vacuum-dominated eras. We also consider the effect of evaporation of primordial black holes on the expansion dynamics of the universe. The analytic solutions describing the energy density of the black holes in equilibrium with radiation are presented. We demonstrate that these solutions act as attractors for the system ensuring stability for both linear and nonlinear situations. We show, however, that inclusion of accretion of radiation delays the onset of this equilibrium in all radiation, matter and vacuum-dominated eras.Comment: 18 pages, one figur

    Aneurysm of a paraumbilical collateral vein.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135619/1/jum1988711639.pd

    Global monopole, dark matter and scalar tensor theory

    Get PDF
    In this article, we discuss the space-time of a global monopole field as a candidate for galactic dark matter in the context of scalar tensor theory.Comment: 8 pages, Accepted in Mod. Phys. Lett.

    Empirical Efficiency Maximization

    Get PDF
    It has long been recognized that covariate adjustment can increase precision, even when it is not strictly necessary. The phenomenon is particularly emphasized in clinical trials, whether using continuous, categorical, or censored time-to-event outcomes. Adjustment is often straightforward when a discrete covariate partitions the sample into a handful of strata, but becomes more involved when modern studies collect copious amounts of baseline information on each subject. The dilemma helped motivate locally efficient estimation for coarsened data structures, as surveyed in the books of van der Laan and Robins (2003) and Tsiatis (2006). Here one fits a relatively small working model for the full data distribution, often with maximum likelihood, giving a nuisance parameter fit in an estimating equation for the parameter of interest. The usual advertisement is that the estimator is asymptotically efficient if the working model is correct, but otherwise is still consistent and asymptotically Normal. However, the working model will almost always be misspecified in practice. By applying standard likelihood based fits, one can poorly estimate the parameter of interest. We propose a new method, empirical efficiency maximization, to target the element of a working model minimizing asymptotic variance for the resulting parameter estimate, whether or not the working model is correctly specified. Our procedure is illustrated in three examples. It is shown to be a potentially major improvement over existing covariate adjustment methods for estimating disease prevalence in two-phase epidemiological studies, treatment effects in two-arm randomized trials, and marginal survival curves. Numerical asymptotic efficiency calculations demonstrate gains relative to standard locally efficient estimators
    • …
    corecore