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Empirical Efficiency Maximization

Daniel B. Rubin and Mark J. van der Laan

Abstract

It has long been recognized that covariate adjustment can increase precision, even
when it is not strictly necessary. The phenomenon is particularly emphasized in
clinical trials, whether using continuous, categorical, or censored time-to-event
outcomes. Adjustment is often straightforward when a discrete covariate parti-
tions the sample into a handful of strata, but becomes more involved when modern
studies collect copious amounts of baseline information on each subject.

The dilemma helped motivate locally efficient estimation for coarsened data struc-
tures, as surveyed in the books of van der Laan and Robins (2003) and Tsiatis
(2006). Here one fits a relatively small working model for the full data distribu-
tion, often with maximum likelihood, giving a nuisance parameter fit in an esti-
mating equation for the parameter of interest. The usual advertisement is that the
estimator is asymptotically efficient if the working model is correct, but otherwise
is still consistent and asymptotically Normal.

However, the working model will almost always be misspecified in practice. By
applying standard likelihood based fits, one can poorly estimate the parameter of
interest. We propose a new method, empirical efficiency maximization, to target
the element of a working model minimizing asymptotic variance for the resulting
parameter estimate, whether or not the working model is correctly specified.

Our procedure is illustrated in three examples. It is shown to be a potentially major
improvement over existing covariate adjustment methods for estimating disease
prevalence in two-phase epidemiological studies, treatment effects in two-arm
randomized trials, and marginal survival curves. Numerical asymptotic efficiency
calculations demonstrate gains relative to standard locally efficient estimators.



1 Introduction

Consider an experiment in which a covariate vector W ∈ IRp is measured on a subject
at baseline, the subject is randomly assigned to a treatment group with probability π0

or a control group with probability 1−π0, and an outcome Y ∈ IR is then assessed. The
observed data would consist of n replicates {Wi,∆i, Yi}n

i=1, for ∆i ∈ {0, 1} a treatment
indicator. Suppose clinical interest lies in assessing a treatment effect

µ = E[Y |∆ = 1] −E[Y |∆ = 0]. (1)

For a binary outcome Y , such as a disease indicator, parameter (1) is termed the
excess risk. Treatment effects could also correspond to (log) relative risks or (log) odds
ratios between disease probabilities P (Y = 1|∆ = 1) and P (Y = 1|∆ = 0).

A
√
n-consistent, asymptotically Normal, and perfectly valid estimator of (1) could

be formed by ignoring baseline covariates {Wi}n
i=1, and applying

µn =

∑n
i=1 ∆iYi∑n
i=1 ∆i

−
∑n

i=1(1 − ∆i)Yi∑n
i=1 1 − ∆i

, (2)

which is simply the difference of means in the treatment and control groups.
However, many authors following Fisher (1932) have observed that discarding co-

variate information is potentially wasteful. The intuition is that a subject’s covariate
Wi might inform how he or she would have responded in both the treatment and control
arm, while unadjusted analysis cannot exploit such knowledge .

The semiparametric literature (e.g. Bickel et al., 1998) has traditionally focused
on efficient estimators. Unfortunately, such estimators suffer from the curse of dimen-
sionality in nontrivial covariate adjustment problems, and the asymptotically efficient
estimator of treatment effect µ in (1) would involve consistently estimating the function
Q(w, δ) = E[Y |W = w,∆ = δ], and using the fit in an estimating equation. While this
could technically be carried out under minimal assumptions, the nonparametric func-
tion approximation problem could be very difficult for covariates W of even moderate
dimension, and an efficient estimator would most likely perform poorly in practice.

A locally efficient estimator is a middle course between inefficient unadjusted es-
timators and impractical efficient estimators. Here one fits a relatively small working
model for the data generating distribution. For a binary outcome Y , this might take
the form of a logistic regression model. One then takes Qn to be the plug-in estima-
tor of Q : (w, δ) → E[Y |W = w,∆ = δ], and uses this Qn as a nuisance parameter
fit in the efficient estimating equation for the treatment effect. Asymptotic efficiency
is achieved if the working model holds, while a misspecified working model does not
compromise

√
n-consistency or asymptotic Normality. The goal is to gain precision by

making some use of informative covariates, while controlling stability by restricting the
working model’s size.

The way locally efficient has been presented for coarsened data structures by Robins
and Rotnitzky (1992), Robins, Rotnitzky, and Zhao (1994), van der Laan and Robins
(2003), Tsiatis (2006), and others, the working model fit would most often be identical
to the fit of someone who believed the model actually held. For instance, if using a
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logistic regression model for the binary regression of outcome Y on (W,∆), coefficients
would be fit with maximum likelihood. When the working model is incorrect, such a
fit can be a very poor choice for the resulting treatment effect estimate. In fact, we
will see that performance can degrade relative to the unadjusted estimator making no
use of covariate information. In this work we present a new locally efficient technique,
empirical efficiency maximization, which aims to select the optimal working model
element for estimating the parameter of interest, irrespective of whether the working
model is correctly specified.

We introduce our method in the following section, and request the reader’s in-
dulgence as we motivate it in an abstract setting. For anyone disinclined to peruse
our general formulation, but interested in knowing how to better use working models
for covariate adjustment, little will be lost by skipping ahead. Section 3 considers
prevalence estimation in two-phase studies. We return to treatment effect estimation
in Section 4, and the omnipresent marginal survival problem is examined in Section
5. Numerical asymptotic efficiency calculations demonstrate advantages over existing
methods. Sections 6 and 7 discuss extensions and comparisons with other covariate
adjustment procedures, and an appendix provides templates for proving empirical ef-
ficiency maximization leads to asymptotically linear estimators.

2 General Coarsened Data Formulation

Suppose that in an ideal world we would take an i.i.d. sample {Xi}n
i=1, whereX ∼ F0 ∈

F contains a subject’s full data. Here F0 is the unknown data generating distribution,
and F0 is a statistical model. Suppose our interest would be in estimating a smooth
full data parameter µ(F0) ∈ IRk. For the time being, we will restrict attention to
estimating a population mean µ(F0) = EF0 [ψ(X)] ∈ IR, and defer treatment of general
smooth parameters to Section 6.

If we could observe the full data, we could estimate µ(F0) with the empirical mean
1
n

∑n
i=1 ψ(Xi). When ψ(X) has finite variance and the full data model F is nonpara-

metric, the empirical mean is asymptotically efficient.
But due to missingness, censoring, or other problems, we often aren’t able to mea-

sure everything we’d like to about each subject. Hence, assume we only have access to
a coarsened dataset {Oi}n

i=1, where

O = Φ(X,C) ∼ P0 = PF0 ,G0 ∈ M = {PF,G : F ∈ F , G ∈ G}.

The Φ will be a known function, and the coarsening variable C will determine how much
of X is actually observed. The data generating distribution for O is P0, belonging to
statistical model M. The law G of {C|X} is known as the coarsening mechanism,
belonging to the model G. We’ll assume G obeys missingness at random as introduced
in Heitjan and Rubin (1991), or more generally the coarsening at random of Gill et al.
(1997), meaning the probability of missingness or coarsening only depends on a part
of the full data that we can always observe.

This paper deals with how to estimate parameter µ(F0) when coarsening mechanism
G0 is either known or can be easily estimated, which we’ll argue can happen in a variety
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of real-world examples. To be more specific, we assume we can correctly specify that
G0 ∈ G0 ⊂ G, where G0 is a submodel for the coarsening mechanism, and from this
submodel we can efficiently estimate G0 with Gn.

An estimator sequence µn = µn(O1, ..., On) is said to be asymptotically linear with
influence curve IC(O|P0) ∈ L2

0(P0) if

µn = µ(F0) +
1

n

n∑

i=1

IC(Oi|P0) + oP0(n
−1/2). (3)

For a population mean µ(F0) = EF0 [ψ(X)], the efficient estimator’s influence curve
takes the form

IC(O|P0) = D(O|G0, Q(F0)) − µ(F0), (4)

where D(O|G0, Q(F0)) results from the doubly robust mapping of ψ(X), defined in
Theorem 2.1 of van der Laan and Robins (2003). An estimator µn satisfying (3) will be
asymptotically Normal, meaning

√
n(µn−µ(F0)) →L N(0, σ2). Efficiency at P0 implies

that if there is another regular estimator sequence {µ̂n} for which
√
n(µ̂n −µ(F0)) →L

N(0, τ 2), then σ2 ≤ τ 2, so the sequence estimates parameter µ(F0) with less precision.
The efficient estimator’s influence curve is termed the efficient influence curve. If
µn − µ̂n = oP0(n

−1/2), the estimators are said to be asymptotically equivalent.
Equations (3) and (4) clearly suggest a route to efficient estimation of µ(F0):

fit the nuisance parameter Q(F0) from the data with Qn, and then apply µn =
1
n

∑n
i=1 D(Oi|Gn, Qn). In fact, this can be carried out in many circumstances.

But as we alluded to in the abstract and introduction, and will show in examples,
estimating the nuisance parameter Q(F0) often requires solving a high dimensional
function approximation problem. Robins and Ritov (1997) provide an extended dis-
cussion, and efficient estimators can be quite unreliable in practice. The locally efficient
approach is to instead assume a relatively small working model F0 ⊂ F for the full
data distribution, which induces a working index set

Q0 = {Q(F ) : F ∈ F0} ⊂ Q = {Q(F ) : F ∈ F}.

Locally efficient coarsened data estimators have operated by letting Qn be the effi-
cient estimate of nuisance parameter Q(F0) under working model F0. The estimator
1
n

∑n
i=1 D(Oi|Gn, Qn) will be asymptotically efficient if the working model is correctly

specified, meaning F0 ∈ F0, but otherwise will still be consistent and asymptotically
linear. This is due to the robustness result in Theorem 2.1 of van der Laan and Robins
(2003), that

EP0 [D(O|G0, Q(F ))] = µ(F0) for any F ∈ F , (5)

meaning a misspecified nuisance parameter Q(F ) 6= Q(F0) will not compromise the
estimator. A salient feature is the double protection property that if either the work-
ing model F0 or the coarsening mechanism model G0 is correctly specified, asymptotic
linearity can be achieved. Section 7 contrasts doubly robust estimation with our forth-
coming proposal.

The problem with local efficiency is that while much can be known about the coars-
ening mechanism G0, the full data working model F0 will most likely be misspecified
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in practice. Why trust that a procedure is desirable at our true location F0, just be-
cause it is optimal at other locales? The working set Q0 is often simply an index of
estimators, excluding many Q ∈ Q to ease the curse of dimensionality. It is then not
necessarily true that standard fits of F0 are desirable for estimating the parameter of
interest µ(F0).

One way to gauge the quality of Q ∈ Q0 is with the asymptotic variance of µn,Q =
1
n

∑n
i=1 D(Oi|G0, Q), which by the robustness result (5) is given by

σ2(Q) = VarP0(D(O|G0, Q)) = EP0 [D
2(O|G0, Q)]− µ2(F0). (6)

When the full data working model fit Qn converges to an element Q ∈ Q0, the asymp-
totic variance of our estimator 1

n

∑n
i=1D(Oi|G0, Qn) will be σ2(Q), and hence it is vital

to consider our fit’s limiting behavior.
Note that µn,Q is unbiased for the parameter µ(F0), but can only be applied as an es-

timator with known coarsening mechanism. When our estimator is 1
n

∑n
i=1 D(Oi|Gn, Q),

and Gn is an efficient estimator of G0 in a correctly specified coarsening mechanism
model G0 ⊂ G, then σ2(Q) will actually be an upper bound for our estimator’s asymp-
totic variance. That is, estimating a known coarsening mechanism improves perfor-
mance. We discuss this further in the appendix, and formal results are stated in
Theorem 2.3 of van der Laan and Robins (2003).

In the present work, we consider estimators that attempt to directly find the Q ∈ Q0

minimizing the asymptotic variance bound σ2(Q), or equivalently maximizing a bound
for asymptotic efficiency (relative to the asymptotically efficient estimator). The key
principle is that σ2(Q) is monotone in the population mean of EP0 [D

2(O|G0, Q)], and
we can estimate this population mean with the empirical mean 1

n

∑n
i=1 D

2(Oi|Gn, Q).
The approximation should be valid for all Q ∈ Q0, irrespective of whether this working
index set was induced by a correctly specified working model for the data generating
distribution. If Q0 is not too large a set in the empirical process sense, we might
expect the empirical and population means of D2(O|G0, Q) to uniformly be close to
each other, and for the empirical minimizer to approach the population minimizer. We
therefore propose selecting

Qn = argminQ∈Q0

1

n

n∑

i=1

D2(Oi|Gn, Q),

and applying the estimator µn = 1
n

∑n
i=1D(Oi|Gn, Qn).

There can in fact be several minimizers of σ2(Q) over working index set Q0, and
what we precisely mean is finding the function in

D0 = {D(·|G0, Q) : Q ∈ Q0}

leading to the smallest asymptotic variance. Values Q1 and Q2 are thus for our pur-
poses indistinguishable if D(O|G0, Q1) = D(O|G0, Q2) with probability one. While we
assume our working model leads to an optimal element in D0, we will throughout this
work refer to finding optimal elements of Q0 or F0.

Under regularity conditions discussed in the appendix, our estimator
√
n(µn−µ(F0))

will converge in law to a Normal distribution, with variance no larger than the infimum
of σ2(Q) as Q ranges over the working index set Q0. Two consequences are of note:
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1. Our estimator is locally efficient, so will be asymptotically equivalent to standard
locally efficient estimators if the working model F0 is correctly specified. But
in the more frequent misspecified model scenario, our estimator’s asymptotic
variance will be equal or superior (modulo improvements due to estimating the
coarsening mechanism).

2. In a covariate adjustment problem, we can often choose our working model to
ensure the unadjusted estimator ignoring covariates is asymptotically equivalent
to 1

n

∑n
i=1D(Oi|G0, Q) for some Q ∈ Q0. Our estimator is then guaranteed to be

at least as efficient as the unadjusted techniques. This property is not shared by
prevailing locally efficient estimators, as we will see in two examples.

Our procedure is related to empirical risk minimization methods used for estimating
irregular parameters such as regression functions, densities, or Bayes classifiers. If the
goal is to select Q in an index set Q0 to minimize a risk function R : Q → IR, one first
represents the risk function as the population mean EP0 [L(O,Q)] of a loss function,
ordinarily measuring the error of Q as a predictor of some feature of the observed data
O. When the risk R(Q) isn’t available, the idea is to use empirical risk 1

n

∑n
i=1 L(Oi, Q)

as a surrogate. We have proposed using the loss function L(O,Q|G0) = D2(O|G0, Q),
depending on the nuisance parameter G0, because it is associated with risk σ2(Q).
Hence, selecting Q ∈ Q0 is an intermediate step in applying the estimator µn =
1
n

∑n
i=1 D(Oi|Gn, Q), and we estimate Qn ∈ Q0 using empirical risk minimization.

Locally efficient estimators maximizing likelihood over working model F0 implicitly
use empirical risk minimization with loss function L(O,Q(F )|G0) = − log dPF,G0(O),
which is less targeted toward the parameter of interest. Because our risk function is
chosen to optimize the asymptotic efficiency of our resulting parameter estimate, we
call our method “empirical efficiency maximization.” Benefits are best seen through
examples, which we now provide.

3 Two-Phase Designs

Following their introduction by Neyman (1938), two-phase studies have become popular
in epidemiology for measuring prevalences of diseases that are difficult or expensive
to diagnose, including mental disorders such as depression and schizophrenia. The
sampling scheme has also received attention from survey statisticians, but for exposition
we restrict to prevalence estimation. As described by Clayton et al. (1998),

A first-phase sample is drawn from the target population and each indi-
vidual within this sample is then assessed using a cheap and easy-to-use
surrogate disease indicator. On the basis of this measurement, the sample
is then stratified and a second-phase subsample is drawn. Every member of
this second sample receives an accurate diagnostic evaluation to establish
their true disease status.

Formally, we can let the vector W ∈ IRp denote information collected on a subject
in phase 1, let ∆ ∈ {0, 1} be an indicator of phase 2 inclusion, and let Y be an indicator
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of disease status. A subject’s observed data is then O ∼ P0, for

O = (W,∆,∆Y ).

The subject’s potentially unobserved full data is X = (W,Y ) ∼ F0, meaning we would
have liked to use the gold standard diagnostic technique for everyone in the sample.

We will see that efficient estimation is straightforward if the phase 1 measurement
W takes on only a handful of values to determine phase 2 sampling strata, such as
when it only consists of a “cheap and easy-to-use surrogate disease indicator.” When
demographic and clinical measurements are also collected on all subjects, prevalence
estimation can be made with better precision, but requires more thought. Hence, we
can consider estimation in two-phase studies as a covariate adjustment problem, where
covariates represent phase 1 information.

We slightly modify standard analysis, by considering observing {Oi}n
i=1 i.i.d., mean-

ing that each subject is included in the second phase based on a weighted coin flip,
where weights are determined by phase 1 information, but the coin flip doesn’t depend
on other subjects’ coin flips. Studies would more likely have a fixed phase 2 sample
size in mind. There can be subtle differences in an estimator’s asymptotics in the two
designs, which will have to be finessed for empirical efficiency maximization at a later
date. Under mild conditions, we expect in both situations to make the optimal locally
efficient covariate adjustment from a full data working model.

We let π0(W ) = PG0(∆ = 1|W ) denote the probability of phase 2 inclusion given
covariates W observed in phase 1. Note that π0(·) is assumed to be a known function,
and plays the role of coarsening mechanismG0 previously discussed. In this case, we do
not have to estimate π(·) with πn(·) according to a correctly specified model, although
our final estimator would be no less efficient. For identifiability, we assume π0(W ) is
bounded away from zero with probability one. As phase 2 inclusion is randomly deter-
mined following phase 1 measurements, we also assume the conditional independence
{∆ ⊥ Y |W}, implying coarsening at random. The parameter of interest is defined to
be µ(F0) = EF0[Y ]. When Y ∈ {0, 1} is a disease indicator, the disease prevalence is
µ(F0) = EF0 [Y ] = PF0(Y = 1).

3.1 Estimation

A popular approach is to use the (1952) Horvitz-Thompson estimator

µn =
1

n

n∑

i=1

∆iYi

π0(Wi)
,

averaging phase 2 responses, but weighing by the inverse of phase 1 inclusion proba-
bilities. While simple and unbiased, the estimator can be quite inefficient, because it
ignores information collected from those subjects only assessed in phase 1.

The efficient influence curve for µ(F0) is given in van der Laan and Robins (2003)
as

IC(O|π0, Q(F0), µ(F0)) = D(O|π0, Q(F0)) − µ(F0),
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for the doubly robust mapping of ψ(X) = Y given by

D(O|π0, Q(F0)) =
∆Y

π0(W )
+ (1 − ∆

π0(W )
)Q(F0)(W ),

where
Q(F ) : W → EF [Y |W ] = PF (Y = 1|W )

maps full data distributions F ∈ F to functions from W to IR.
In line with robustness result (5), the estimator

µn,Q =
1

n

n∑

i=1

D(Oi|π0, Q)

will be unbiased for µ(F0) = PF0(Y = 1) at any Q(F ) : W → PF (Y = 1|W ). This
can be immediately seen, because it is a trivial computation to show the second term
in D(O|π0, Q) has mean zero for any Q, while the first term has expectation µ(F0)
as in the Horvitz-Thompson estimator. Each Q ∈ Q = {Q(F ) : F ∈ F} leads to an
asymptotic variance σ2(Q) of estimator µn,Q. The choice Q(F0)(W ) = PF0(Y = 1|W )
minimizes this quantity.

An asymptotically efficient estimator can be constructed for this problem, and
would involve consistently fitting the binary regression Q(F0)(W ) = PF0(Y = 1|W )
with Qn, and then applying µn,Qn = 1

n

∑n
i=1 D(Oi|π0, Qn). From our assumed condi-

tional independence {∆ ⊥ Y |W}, it follows that PF0(Y = 1|W ) = PF0(Y = 1|W,∆ =
1), so we could fit the regression function using only the phase 2 sample. Note that
µn,Qn would no longer necessarily be unbiased for µ(F0).

Efficiency presents no essential challenge whenW takes on a small number of values,
because Q(F0)(w) could be fit with the empirical mean of Y in the {W = w} stratum
of phase 2. For W a large vector of informative covariates measured in phase 1, con-
sistently fitting PF0(Y = 1|W ) would be a potentially difficult function approximation
problem, susceptible to the curse of dimensionality. When simple unbiased estimators
such as the Horvitz-Thompson weighted average are available, data analysts might be
justifiably hesitant to apply machine learning tools.

The locally efficient technique is to assume a relatively constrained full data working
model F0 ⊂ F , inducing a working index set

Q0 = {Q(F ) : W → PF (Y = 1|W ) : F ∈ F0} ⊂ Q. (7)

Locally efficient procedures have traditionally fit full data working models with max-
imum likelihood, and such fits were mentioned for prevalence estimation in two-phase
studies by Clayton et al. (1998) and Alonzo, Pepe, and Lumley (2003). A correctly
specified working model leads to asymptotic efficiency. The estimator µn,Qn will be
asymptotically linear even when Qn is fit from a misspecified working model, and the
hope is to still gain precision by making some use of informative phase 1 information.

By far the most popular working model for the conditional distribution of a binary
variable is the logistic regression model, in which case our working index set would be

Q0 = {Qβ(w) → 1

1 + exp (−βTw)
: β ∈ IRp},
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where our notation suppresses the intercept by including a constant element in the
W vector. Note that locally efficient estimation differs from the plug-in estimator
µn = 1

n

∑n
i=1Qn(Wi) resulting from the logistic regression fit of PF0(Y = 1|W ) and the

empirical distribution for L(W ). The plug-in technique isn’t robust against working
model misspecification, and consequently is inconsistent.

When the logistic regression model is correctly specified, the usual maximum like-
lihood estimate of coefficient vector β will of course converge to the true coefficient
vector. But when the model is incorrect, the maximum likelihood fit will converge
to some Q ∈ Q0 (that minimizing Kullback-Leibler divergence from Q(F0)), and this
might not be the optimal element for estimating the parameter of interest. Empiri-
cal efficiency maximization notes that the asymptotic variance σ2(Q) of µn,Q can be
approximated empirically with 1

n

∑n
i=1D

2(Oi|π0, Q), and tries to minimize this em-
pirical “risk” over working index set Q0. This here reduces to regressing ∆Y

π0(W )
on

( ∆
π0(W )

− 1)Qβ(W ), and solving for β with nonlinear least squares.
In a broader sense, we refer to empirical efficiency maximization as the class of

methods that represent σ2(Q) as monotone in the population mean of a function of
the observed data, nuisance parameter, and working model element Q, and attempt to
minimize the empirical mean of this function over the working index set. In two-phase
prevalence estimation, there is another representation of the asymptotic variance we
can use for minimization. Examine the following theorem, proven in the appendix.

Theorem 1.

σ2(Q) = VarP0(D(O|π0, Q)) = C(P0) + EP0 [∆
1 − π0(W )

π2
0(W )

|Y −Q(W )|2]

for

C(P0) = −µ2 + E[| ∆Y

π0(W )
|2] + E[

1 − π0(W )

π0(W )
{E[Y |W ]2 − (Y − E[Y |W ])2}]

not depending on Q.

The theorem reveals that the optimal Q ∈ Q0 for efficiency is the binary regressor
minimizing not a Kullback-Leibler divergence, but a weighted mean squared error.
If the logistic regression does not hold exactly, the two minima might differ. The
empirical efficiency maximization approach is thus to fit logistic regression coefficients
with weighted nonlinear least squares, which can be done with the nls() function in
the R language. We must solve

βn = argmin
β∈IRp

1

n

n∑

i=1

∆i
1 − π0(Wi)

π2
0(Wi)

|Yi −Qβ(Wi)|2,

and then estimate our parameter with µn,Qβn
= 1

n

∑n
i=1D(Oi|π0, Qβn). The appendix

provides templates for proving this estimator is asymptotically equivalent to µn,Qβ0
=

1
n

∑n
i=1 D(Oi|π0, Qβ0), where Qβ0 is the element of Q0 optimizing asymptotic variance.

It may initially appear counterintuitive to fit logistic regression coefficients with
a criterion other than the likelihood function. It is important to keep in mind that
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the stated goal is estimating prevalence µ(F0) = PF0(Y = 1), and that estimating
the binary regression function PF0 (Y = 1|W ) is not an end in itself. While weighted
nonlinear least squares might lead to an unappealing regression fit, it will in general
be preferable for our parameter of interest.

When the logistic regression assumptions are satisfied, weighted nonlinear least
squares will be less efficient than maximum likelihood for the model coefficients, but
equally efficient for prevalence estimate 1

n

∑n
i=1 D(Oi|π0, Qn). This occurs because as

we argue in the appendix, the rate that Qn converges to the optimal Qβ0 ∈ Q0 will
not affect asymptotics, so long as the coarsening mechanism is estimated at rate n−1/2,
and in this example it is known by design.

Note the Horvitz-Thompson estimator is of the form µn,Q = 1
n

∑n
i=1D(Oi|π0, Q),

with constant function Q(W ) = 0. The logistic regression working index set Q0 in-
cludes all constant functions in (0, 1), and we do not expect discontinuity of σ2(Q)
as Q approaches the zero function at index set’s boundary. Hence, the optimal work-
ing model element Qβ0 ∈ Q0 should improve upon the Horvitz-Thompson estimator’s
asymptotic variance. When using empirical efficiency maximization to be locally effi-
cient, we therefore might guarantee asymptotic gains over the naive estimator ignoring
phase 1 information.

3.2 Asymptotic Variance Calculations

We assessed estimator performance by generating data structures according to the
following mechanism:

W ∼ N(0, 1)

π0(W ) = PG0(∆ = 1|W ) =
1

1 + exp(W )
truncated to be in [.1, .9]

PF0(Y = 1|W ) =
1

1 + exp(W + ηW 2)
.

Here η determined misspecification of the working logistic regression model, and
was varied between 0 and 3 in steps of 0.1. For each value of η, we found the limiting
logistic regression coefficients for both maximum likelihood and empirical efficiency
maximization estimators based on data generated with a sample of size n = 100, 000.
This sample was also used to find prevalence µ(F0) = PF0(Y = 1). Based on a
new sample of size n = 100, 000, we then computed asymptotic variances by evalu-
ating 1

n

∑n
i=1 D

2(Oi|π0, Q) − µ2(F0). We considered Q corresponding to the Horvitz-
Thompson estimator, the locally efficient estimator based on a logistic regression MLE,
the empirical efficiency maximizer for this working logistic regression model, and the
efficient Q(F0)(W ) = PF0(Y = 1|W ).

Results are shown in Figure 1, as the misspecification parameter η increased from
zero and the working logistic regression model became less appropriate. It was clear
that the Horvitz-Thompson estimator was far less efficient than the three estimators
making use of phase 1 information. Also clear was that empirical efficiency maximiza-
tion led to a better logistic regression fit than the MLE for the parameter of interest,
as performance closely tracked that of the efficient estimator.
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Figure 1: 1−4 represent the Horvitz-Thompson estimator that ignores phase 1 measure-
ments, a locally efficient estimator fitting a misspecified logistic regression model’s co-
efficients with maximum likelihood, our estimator fitting logistic regression coefficients
with empirical efficiency maximization, and an asymptotically efficient estimator using
empirical mean µn = 1

n

∑n
i=1D(Oi|π0, Q) at the true Q(F0)(W ) = PF0(Y = 1|W ).

4 Randomized Experiments with Covariates

We now return to the treatment effect estimation problem considered in the introduc-
tion, and fill in details for empirical efficiency maximization. Recall that the observed
data is O = (W,∆, Y ) ∼ P0, where W ∈ IRp is a baseline covariate vector, ∆ ∈ {0, 1}
is a treatment indicator, and Y ∈ IR is an assessed outcome. Subjects are randomly
assigned to the treatment group with probability π0. Often π0 = 1

2
in clinical trials,

and we assume 0 < π0 < 1 for identifiability.
To cast estimation in our general setting of Section 2, we must consider what

unavailable full data X we would have liked to measure for each subject. For this
purpose we use the counterfactual outcome formulation proposed by Neyman (1923)
and Rubin (1974) (Donald B. Rubin, not the D.B. Rubin authoring the present work).
A subject’s full data is then X = (W, (Y1, Y0)) ∼ F0 ∈ F , where Y1 and Y0 are the
outcomes that would have occurred under treatment or no treatment, only one of
which is ever seen. The known assignment probability π0 plays the role of coarsening
mechanism G0 in Section 2. As in (1), we consider estimating treatment effect

µ(F0) = EF0[Y1 − Y0] = EF0 [Y1] − EF0 [Y0] = EP0 [Y |∆ = 1] − EP0 [Y |∆ = 0].

Before delving into estimation, a few words are in order regarding sampling as-
sumptions. As in the two-phase design problem, we depart from Neyman’s original
conception and assume an i.i.d. sample {Oi}n

i=1, meaning each subject is assigned to
treatment or control based on a (possibly unfair) coin flip, but subjects’ coins don’t
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influence one another. Friedman, Furberg, and DeMets (1998) note such “simple ran-
domization is not often used, even for large studies,” because by chance there can be
“a serious imbalance in the number of participants assigned to each group.” A more
realistic scheme would form a subsample of the n subjects to ensure that proportion
π0 were assigned to treatment. Further, randomization ensures the two groups are
balanced on important prognostic factors measured at baseline. It has been claimed
that this can increase power, but Peto (1978) and Mantel (1984) have argued that
proper covariate adjustment leads to equivalent asymptotics under unstratified ran-
domization. Our restriction to an i.i.d. treatment assignment scheme is for exposition.
We expect our locally efficient adjustment procedures to have optimal

√
n-asymptotics

under more realistic sampling, and intend to show in future work why the coin flipping
design results in no precision loss for our estimators.

To test the hypothesis of no difference between treatment and control arms, one
can compute the null distribution of a treatment effect statistic by repeating the ran-
domization to assign treatment labels, and repeatedly recomputing the parameter fit.

No matter the sampling scheme, it is usually possible to compute a valid treatment
effect estimate by ignoring baseline covariates. The unbiased Horvitz-Thompson analog
using inverse probability weighting is easily seen to be

µn =
1

n

n∑

i=1

{∆iYi

π0
− (1 −∆i)Yi

1 − π0
}.

We’ve mentioned that fitting the coarsening mechanism can only improve efficiency.
Replacing known π0 with the empirical πn = 1

n

∑n
i=1 ∆i reduces to applying (2), which

is asymptotically efficient among unadjusted estimators.
Life becomes less simple with covariates, particularly when too much baseline in-

formation is collected to naturally partition the sample. Pocock et al. (2002) surveyed
50 clinical trial reports, and found that 36 used covariate adjustment, and that 12
reports emphasized adjusted over unadjusted analysis. The authors remarked that
“Nevertheless, the statistical emphasis on covariate adjustment is quite complex and
often poorly understood, and there remains confusion as to what is an appropriate
statistical strategy.”

4.1 Proposed Treatment Effect Estimator

Efficiency theory can guide the path to appropriate adjustment. van der Laan and
Robins (2003) show the efficient influence curve for the treatment effect (1) is

IC(O|π0, Q(F0), µ(F0)) = D(O|π0, Q(F0)) − µ(F0). (8)

Here D(O|π0, Q(F0)) is the doubly robust mapping of ψ(X) = Y1 −Y0, and is given by

D(O|π0, Q(F0)) = {∆Y

π0
+(1−∆

π0
)Q(F0)(W, 1)}−{(1− ∆)Y

1 − π0
+(1− 1 − ∆

1 − π0
)Q(F0)(W, 0)},

where
Q(F )(w, δ) → EF [Y |W = w,∆ = δ]

11
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maps full data distributions F ∈ F to functions from W ×{0, 1} to IR.
Analogous to the two-phase design problem, efficient estimation would entail con-

sistently estimating the regression function Q(F0) for use in µn = 1
n

∑n
i=1 D(Oi|π0, Qn),

and the procedure would be unreliable for nontrivial baseline covariates.
Local efficiency is again based on the implication of robustness result (5) that

µn,Q = 1
n

∑n
i=1D(Oi|π0, Q(F )) is unbiased for treatment effect µ(F0) at any Q(F ) ∈

Q = {Q(F ) : F ∈ F}. We proceed by using a working model F0 for the full data
distribution, inducing a set of functions Q0 = {Q(F ) : F ∈ F0}, and then applying
µn = 1

n

∑n
i=1D(Oi|π0, Qn) for appropriate fit Qn ∈ Q0.

For continuous outcome Y , we could model the function Q(F0)(w, δ) = EF0[Y |W =
w,∆ = δ] with linear regression. The working index set would then become

Q0 = {Qβ0,β1,β2(w, δ) = β0 + β1δ + βT
2 w : β0, β1 ∈ IR,β2 ∈ IRp}.

One’s first thought might be to use working index set fit Qn corresponding to the least
squares solution

(β0,n, β1,n, β2,n) = argminβ0,β1,β2

1

n

n∑

i=1

|Yi − β0 − β1∆i − βT
2 Wi|2,

which of course reduces to the maximum likelihood estimate under i.i.d. Gaussian
errors in the regression model.

By an algebraic coincidence, the least squares fit Qn leads to an identical locally
efficient estimate µn,Qn = 1

n

∑n
i=1D(Oi|π0, Qn), plug-in estimate 1

n

∑n
i=1{Qn(Wi, 1) −

Qn(Wi, 0)} of µ(F0) = E[E[Y |W,∆ = 1] − E[Y |W,∆ = 0]], and coefficient estimate
β1,n. It follows immediately from the theory of local efficiency that this estimate is
asymptotically linear, even if the linear regression model is misspecified. Under a
slightly altered sampling scheme, Freedman (2007a) proves that “almost anything can
happen” when π0 6= 1

2
, meaning asymptotic variance can be better or worse than that

of the efficient unadjusted estimator (2).
Empirical efficiency maximization instead proceeds by attempting to best fit work-

ing index set Q0 for the parameter of interest. We again propose selecting

Qn = argminQ∈Q0

1

n

n∑

i=1

D2(Oi|π0, Q). (9)

For the working index set Q0 induced by a linear regression model, this corresponds to
minimizing

1

n

n∑

i=1

|∆iYi

π0
+ (1 − ∆i

π0
)(β0 + β1 + βT

2 Wi) −
(1 − ∆i)Yi

1 − π0
− (1 − 1 − ∆i

1 − π0
)(β0 + βT

2 Wi)|2

over (β0, β1, β2), but this is clearly just a modified linear least squares problem. The
model matrix is in this case singular, but we discuss in Section 4.5 why any solution
will suffice. If the appendix conditions can be verified, which we fully expect, then our
resulting locally efficient µn,Qn = 1

n

∑n
i=1 D(Oi|π0, Qn) asymptotically makes the best

possible use of the working function class Q0 among all µn,Q.
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A particular consequence is that the empirical efficiency maximization estimate will
asymptotically dominate the optimal unadjusted µn in (2). The rationale is that from
(8), the efficient unadjusted estimator’s influence curve is

IC0(O|P0) =
∆Y

π0

+ (1 − ∆

π0

)EF0 [Y1] −
(1 − ∆i)Yi

1 − π0

− (1 − 1 −∆i

1 − π0

)EF0 [Y0] − µ(F0).

The function class Q0 clearly includes this Q(w, δ) = δEF0[Y1] + (1 − δ)EF0 [Y0] for
appropriate coefficients. Likewise, the linear least squares fit Qn will converge to some
Q ∈ Q0, corresponding to the coefficients minimizing expected squared error EP0 |Y −
Q(W,∆)|2. By making the most efficient fit of Q0 for the parameter of interest, we can
be more efficient than when using the two special elements associated with unadjusted
analysis and linear least squares.

Tsiatis et al. (2000, revised 2006) suggests locally efficient estimation for this
treatment effect problem, but proposes decoupling estimation of Q(F0)(w, δ) into esti-
mation of outcome regressions Q1(F0)(w) = EF0 [Y |W = w,∆ = 1] and Q0(F0)(w) =
EF0 [Y |W = w,∆ = 0] in the treatment and control group. Fitting a linear least
squares in each group reduces to adding a ∆W interaction term to our previous linear
model, and it can be shown such a procedure is no less asymptotically efficient than
unadjusted estimator (2). When working models Q1,0 and Q0,0 are made for the two
regressions Q1(F0) and Q0(F0), we can of course rejoin to form the index set

Q0 = {Q(w, δ) = δQ1(w) + (1 − δ)Q0(w) : Q1 ∈ Q1,0, Q0 ∈ Q0,0}.

Empirical efficiency maximization using the rejoined Q0 would then correspond to
targeting the most efficient pair (Q1, Q0) in Q1,0 ×Q0,0 for the parameter of interest.

4.2 Excess Risk

With binary outcome Y ∈ {0, 1}, parameter µ(F0) = PF0 (Y1 = 1) − PF0(Y0 = 1) is
termed the excess risk. The working index set Q0 would then more likely be induced
by a logistic regression model, and would take the form

Q0 = {Q(w, δ) =
1

1 + exp(−β0 − β1δ − βT
2 w)

: β0, β1 ∈ IR, β2 ∈ IRp}. (10)

Standard locally efficient estimation would operate by fitting coefficients with the
usual maximum likelihood estimates to form Qn ∈ Q0, and then applying µn,Qn =
1
n

∑n
i=1 D(Oi|π0, Qn). Moore and van der Laan (2007) suggest such logistic regression

for the excess risk problem, as do Tsiatis et al (2006) (after decoupling). While max-
imum likelihood would converge to the true Q(F0) in a correct model, the limiting
Q ∈ Q0 could lead to a suboptimal parameter estimate under misspecification.

The efficient influence curve clearly suggests we should try to fit Q(F0)(w, δ) =
PF0(Y = 1|W = w,∆ = δ) as closely as possible, but it is important to define “closely.”
Should binary regressors minimize Kullback-Leibler divergence, mean squared error, or
something else? And does the optimal element in a working model Q0,1 forQ1(F0)(w) =
PF0(Y = 1|W = w,∆ = 1) depend on the element being used in working model
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Q0,0, and vice versa? Empirical efficiency maximization answers these questions, by
defining the distance from Q ∈ Q0 to Q(F0) through the magnitude of σ2(Q) =
EP0 [D

2(O|π0, Q)]−µ(F0), the asymptotic variance of the resulting parameter estimate.
As we will see shortly, fitting logistic regression coefficients as in (9) would involve not
maximizing likelihood, but solving a nonlinear least squares problem.

4.3 Treatment and Control Disease Probabilities

Note that for estimating disease probabilities µ1(F0) = PF0(Y1 = 1) = P0(Y = 1|∆ =
1) and µ0(F0) = PF0(Y0 = 1) = P0(Y = 1|∆ = 0) in the treatment and con-
trol groups, the problems reduce to two-phase prevalence estimation with constant
PG0(∆ = 1|W ) = π0(W ) = π0. By another algebraic anomaly, fitting logistic re-
gression logit P (Y = 1|W,∆) = β0 + β1∆ + βT

2 W with maximum likelihood and
using the locally efficient estimate of µj(F0) is equivalent to using the plug-in estimate
µj,n =

∑n
i=1Qn(Wi, j). Hence, plugging in happens to give consistency and asymptotic

linearity. We wouldn’t be so fortuitious in general two-phase prevalence estimation,
and it is generally important to distinguish locally efficient estimation based on fitting
Fn ∈ F0 from plugging in µn = µ(Fn).

4.4 Relative Risks and Odds Ratios

With binary outcomes, the excess risk is not the only way to assess a treatment effect.
Consider the (log) relative risk and (log) odds ratio

fRR(µ1, µ0) =
µ1

µ0
=
PF0(Y1 = 1)

PF0(Y0 = 1)

flog(RR)(µ1, µ0) = log fRR(µ1, µ0)

fOR(µ1, µ0) =
µ1

1 − µ1
/

µ0

1 − µ0
=
PF0(Y1 = 1)

PF0(Y1 = 0)
/
PF0(Y0 = 1)

PF0(Y0 = 0)

flog(OR)(µ1, µ0) = log fOR(µ1, µ0). (11)

To estimate treatment effect flog(OR)(µ1, µ0), some are tempted to fit the logistic
regression model

logit P (Y = 1|W,∆) = β0 + β1∆ + βT
2 W,

with maximum likelihood, and then report β1,n. Freedman (2007b) notes the estimator
can be inconsistent when the logistic regression model fails. Even when the model
holds, Robinson and Jewell (1991) prove that β1,n can only lose precision relative to the
proper unadjusted estimate, and it appears there is bewilderment about how covariate
adjustment should proceed, if at all.

The four treatment effect parameters listed in (11) are not full data population
means EF0 [ψ(X)], so we are no longer in the setting of Section 2. Section 6 discusses
extensions to parameters solving estimating equations, as in the books of van der Laan
and Robins (2003) and Tsiatis (2006), but we are also beyond this scope, because the
full data efficient influence curve has no variation independent parametrization in terms
of the parameter of interest and nuisance parameters. Handling such difficulties was
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one motivation behind our targeted maximum likelihood algorithm in van der Laan and
Rubin (2006), later used by Moore and van der Laan (2007) to form covariate-adjusted
relative risk and odds ratio estimates. We here consider a different approach.

The efficient influence curves for parameters µ1(F0) and µ0(F0) are

IC1(O|π0, Q(F0), µ1(F0)) = D1(O|π0, Q(F0)) − µ1(F0)

=
∆Y

π0
+ (1 − ∆

π0
)Q(F0)(W, 1) − µ1(F0)

and

IC0(O|π0, Q(F0), µ0(F0)) = D0(O|π0, Q(F0)) − µ0(F0)

=
(1 − ∆)Y

1 − π0
+ (1 − 1 − ∆

1 − π0
)Q(F0)(W, 0) − µ0(F0).

We consider estimators µ1,n = 1
n

∑n
i=1D1(Oi|π0, Q) and µ0,n = 1

n

∑n
i=1D(Oi|π0, Q),

and then estimate parameter f(µ1, µ0) with the substitution fn = f(µ1,n, µ0,n). Among
such substitutions, we then attempt to find the optimal element in working index set
Q0 for our parameter of interest, and estimate f(µ1, µ0) accordingly. Our limiting
element of Q0 will lead to equal or superior asymptotic variance than when using the
unadjusted substitution, or substituting (locally efficient/plug-in) maximum likelihood
based logistic regression fits of µ1(F0) and µ0(F0).

For the previously listed treatment effects, the delta method can trivially be used
to derive influence curves for substitution estimators fn = f(µ1,n, µ0,n) of f(µ1, µ0),
which are

ICRR(O) = IC1(O|π0, Q, µ1)
∂fRR

∂µ1
(µ1, µ0) + IC0(O|π0, Q, µ0)

∂fRR

∂µ0
(µ1, µ0)

IClog(RR)(O) = IC1(O|π0, Q, µ1)
∂flog(RR)

∂µ1
(µ1, µ0) + IC0(O|π0, Q, µ0)

∂flog(RR)

∂µ0
(µ1, µ0)

ICOR(O) = IC1(O|π0, Q, µ1)
∂fOR

∂µ1
(µ1, µ0) + IC0(O|π0, Q, µ0)

∂fOR

∂µ0
(µ1, µ0)

IClog(OR)(O) = IC1(O|π0, Q, µ1)
∂flog(OR)

∂µ1
(µ1, µ0) + IC0(O|π0, Q, µ0)

∂flog(OR)

∂µ0
(µ1, µ0),

where the partial derivatives are given by

[
∂fRR

∂µ1
,
∂fRR

∂µ0
](µ1, µ0) = [µ−1

0 ,−µ1µ
−2
0 ]

[
∂flog(RR)

∂µ1
,
∂flog(RR)

∂µ0
](µ1, µ0) = [µ−1

1 ,−µ−1
0 ]

[
∂fOR

∂µ1
,
∂fOR

∂µ0
](µ1, µ0) = [

(1 − µ0){(1 − µ1) + µ1}
(1 − µ1)2µ0

,
µ1{−(1 − µ0) − µ0}

(1 − µ1)µ2
0

]

[
∂flog(OR)

∂µ1
,
∂flog(OR)

∂µ0
](µ1, µ0) = [µ−1

1 + (1 − µ1)
−1,−µ−1

0 − (1 − µ0)
−1].

The asymptotic variance of f(µ1,n, µ0,n) is thus σ2(Q) = EP0 [IC
2(O|π0, Q, µ1, µ0)].

Based on preliminary estimates µ̂0,n and µ̂1,n, this could be approximated empirically
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with 1
n

∑n
i=1 IC

2(Oi|π0, Q, µ̂0,n, µ̂1,n), and minimized over working index set Q0. Em-
pirical efficiency maximization is thus to select

Qn = argminQ∈Q0

1

n

n∑

i=1

IC2(Oi|π0, Q, µ̂1,n, µ̂0,n),

and then estimate the parameter of interest with

fn = f(
1

n

n∑

i=1

D1(Oi|π0, Qn),
1

n

n∑

i=1

D0(Oi|π0, Qn)).

The preliminary µ̂1,n and µ̂0,n will generally only need to be consistent for fn to be
asymptotically equivalent to the substitution estimator using optimal Q ∈ Q0. Unad-
justed preliminary fits would suffice for this purpose. Section 6 provides more details
on the extension of empirical efficiency maximization to such substitution estimators.

4.5 Implementation

For the parameters we’ve considered estimating in randomized experiments, our op-
timization problems can be carried out with nonlinear least squares. Suppose our
working model Q0 for the outcome regression Q(F0)(w, δ) = EF0[Y |W = w,∆ = w]
is parametrized by a finite dimensional β, as when using linear or logistic regression
models. Using surrogate responses {Y ?

i = Y ?(Oi)}n
i=1 and a function hβ(O) of the

observed data O = (W,∆, Y ), empirical efficiency maximization reduces to finding β
by minimizing 1

n

∑n
i=1 |Y ?

i − hβ(Oi)|2. The surrogate responses Y ?(O) are given by

Mean treatment response:
∆Y

π0

Mean control response:
(1 − ∆)Y

1 − π0

Treatment effect/excess risk:
∆Y

π0
− (1 − ∆)Y

1 − π0

Relative risk: (
∆Y

π0
− µ̂1,n)

∂fRR

∂µ1
(µ̂1,n, µ̂0,n) + (

(1 −∆)Y

1 − π0
− µ̂0,n)

∂fRR

∂µ0
(µ̂1,n, µ̂0,n)

Log(RR): (
∆Y

π0
− µ̂1,n)

∂flog(RR)

∂µ1
(µ̂1,n, µ̂0,n) + (

(1 − ∆)Y

1 − π0
− µ̂0,n)

∂flog(RR)

∂µ0
(µ̂1,n, µ̂0,n)

Odds ratio: (
∆Y

π0
− µ̂1,n)

∂fOR

∂µ1
(µ̂1,n, µ̂0,n) + (

(1 −∆)Y

1 − π0
− µ̂0,n)

∂fOR

∂µ0
(µ̂1,n, µ̂0,n)

Log(OR): (
∆Y

π0
− µ̂1,n)

∂flog(OR)

∂µ1
(µ̂1,n, µ̂0,n) + (

(1 − ∆)Y

1 − π0
− µ̂0,n)

∂flog(OR)

∂µ0
(µ̂1,n, µ̂0,n),
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and the fitted values hβ(O) are given by

Mean treatment response: − (1 − ∆

π0
)Qβ(W, 1)

Mean control response: − (1 − 1 − ∆

1 − π0
)Qβ(W, 0)

Treatment effect/excess risk: − (1 − ∆

π0
)Qβ(W, 1) + (1 − 1 − ∆

1 − π0
)Qβ(W, 0)

RR: − (1 − ∆

π0

)
∂fRR

∂µ1

(µ̂1,n, µ̂0,n)Qβ(W, 1) − (1 − 1 − ∆

1 − π0

)
∂fRR

∂µ0

(µ̂1,n, µ̂0,n)Qβ(W, 0)

Log(RR): − (1 − ∆

π0
)
∂flog(RR)

∂µ1
(µ̂1,n, µ̂0,n)Qβ(W, 1)

− (1 − 1 − ∆

1 − π0

)
∂flog(RR)

∂µ0

(µ̂1,n, µ̂0,n)Qβ(W, 0)

OR: − (1 − ∆

π0
)
∂fOR

∂µ1
(µ̂1,n, µ̂0,n)Qβ(W, 1) − (1 − 1 − ∆

1 − π0
)
∂fOR

∂µ0
(µ̂1,n, µ̂0,n)Qβ(W, 0)

Log(OR): − (1 − ∆

π0
)
∂flog(OR)

∂µ1
(µ̂1,n, µ̂0,n)Qβ(W, 1)

− (1 − 1 − ∆

1 − π0
)
∂flog(OR)

∂µ0
(µ̂1,n, µ̂0,n)Qβ(W, 0).

Note that some nonlinear least squares software will give error messages for such mini-
mizations, because of a singular gradient of the objective function. This should not be
of great concern. The problem is that different values of β or Qβ can lead to equivalent
influence curves IC(O|π0, Qβ, µ(F0)) = D(O|π0, Qβ) − µ(F0). Our estimator’s asymp-
totics are determined by the limiting value of D(·|π0, Qβn), and how the functions
D0 = {D(·|π0, Q) : Q ∈ Q0} are parametrized is irrelevant.

One may find that their βn doesn’t converge, or fails to converge to the true β0

after generating data according to a working model. By themselves such phenom-
ena aren’t necessarily ominous, and in such cases the first step in checking conver-
gence of the function D(·|π0, Qn). For the (log) relative risk and (log) odds ratio,
the same disclaimer of course applies even though influence curves aren’t of the form
IC(O|π0, Q, µ(F0)) = D(O|π0, Q) − µ(F0), and we must examine the behavior of
IC(·|π0, Qβn, µ̂1,n, µ̂0,n).

4.6 Asymptotic Variance Calculations

We again compared estimators by examining asymptotic variance, after simulating an
experiment as follows:

W ∼ N(0, 1)

PG0(∆ = 1|W,Y ) = PG0(∆ = 1) = π0

P0(Y = 1|W,∆) =
1

1 + exp(−∆W + (1 + ∆)W )
.
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Figure 2: 1 − 4 represent the efficient unadjusted estimator (2) of excess risk, a lo-
cally efficient estimator fitting a misspecified logistic regression model’s coefficients
with maximum likelihood, the empirical efficiency estimator, and the fully efficient
estimator. Performance is similar. But as the treatment probability increases, stan-
dard locally efficient covariate adjustment becomes worse than no adjustment, while
empirical efficiency maximization essentially leads to full efficiency.

We varied the treatment assignment probability from π0 = 1
2

to π0 = 9
10

in steps
of 0.02. Here covariate W was positively associated with outcome Y in the treatment
group (∆ = 1), while negatively associated in the control group (∆ = 0). We considered
estimating the excess risk µ(F0) = P0(Y = 1|∆ = 1)−P0(Y = 1|∆ = 0), which in this
case was zero for any value of π0.

Based on a sample of size n = 100, 000 we computed the limiting influence curves
of locally efficient estimators based on fitting a misspecified logistic regression model
with maximum likelihood and empirical efficiency maximization. For the latter, we
minimized 1

n

∑n
i=1D

2(Oi|π0, Q(γ,α,β)) with the nlminb() in the R language where

Q(α,γ,β)(w, δ) =
1

1 + exp(−γ − αδ − βw)
.

By design, we also knew the influence curves of the unadjusted estimator (2), and
the efficient estimator. Based on a new sample of size n = 100, 000, we computed
asymptotic variances by finding the empirical means of the squared influence curves.

Figure 2 displays results. There didn’t appear to be large differences between
estimators, but the structure is worth noting. Near π0 = 1

2
, performance appeared

identical. But as the treatment assignment probability increased, unadjusted analysis
appeared superior than standard locally efficient analysis, while empirical efficiency
maximization was indistinguishable from efficient estimation.
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5 Covariate Adjustment in Survival Analysis

Let’s move to one of the most common tasks for a biostatistician: estimating a failure
time distribution in the presence of right censoring. In typical studies, covariates are
collected on subjects in addition to failure and censoring time measurements, and our
data structure is n i.i.d. copies of

O = (W,∆ = I(T ≤ C), T̃ = min(T,C)}.

Here W ∈ IRp is a baseline covariate vector, T is a failure time, and C is a censoring
time. The unavailable full data would be X = (W,T ) ∼ F0, which we might not
directly observe because some subjects cannot be monitored until failure. We will let
the coarsening mechanism G0(·) denote the distribution function of censoring variable
C, and Ḡ(c) = 1 − G0(c) = P (C > c) the censoring variable’s survival curve, and
interchangeably refer to this function as the censoring mechanism.

5.1 Marginal Survival

Suppose interest lies in estimating the full data parameter µ(F0) = PF0(T > t), the
survival probability at a single time t, such as five-year survival. As censoring is often
caused by study termination, we also assume it to be completely independent of a
subject’s covariates and failure time. This is written

X = {W,T} ⊥ C, (12)

and implies coarsening at random.
In fact, this independence assumption (12) is implicitly made by those who ignore

clinically informative covariates and fit the survival curve with the well-known estima-
tor of Kaplan and Meier (1958), which is what would most likely be done in practice.
Actually, Kaplan-Meier requires the weaker marginal independence {T ⊥ C}, but for
covariates predictive of failure time, it is hard to imagine how this could be clinically
justified without the stronger complete independence.

If a component of W is associated with censoring but not survival, it can be dis-
carded to satisfy (12), and our estimator will suffer no precision loss. We also assume
that Ḡ0(T̃ ∨ t) is bounded away from zero with probability one, and survival can be
truncated shortly after t to ensure this without altering the parameter of interest.

While convenient, ignoring informative covariates can lead to a serious loss in effi-
ciency, and anyone who has viewed Kaplan-Meier confidence bands can attest that the
estimator’s precision often leaves much to be desired. The rationale is that clinically
predictive measurements provide extra information about failure times of individuals
lost to censoring. Empirical efficiency maximization is thus something to consider when
Kaplan-Meier is an appropriate temptation.

The efficient influence curve for survival probability µ(F0) = PF0(T > t) is

IC(O|G0, Q(F0), µ(F0)) = D(O|G0, Q(F0)) − µ(F0),
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for the doubly robust mapping of ψ(X) = I(T > t) given by

D(O|G0, Q(F0)) =
∆I(T̃ > t)

Ḡ0(T̃−)
+

∫
Q(F0)(c,W )

Ḡ0(c)
dM(c),

where
Q(F ) : (W, c) → PF (T > t|T > c,W )

maps full data distributions F ∈ F to functions from W ×C to [0, 1]. Here

M(c) = N(c) −A(c)

N(c) = I(T̃ ≤ c,∆ = 0)

A(c) =

∫ c

−∞
I(T̃ ≥ u)

dG(u)

Ḡ(u−)
.

The martingale M(·) is built from the Doob-Meyer decomposition of the counting
process N(·) jumping at an observed censoring time, and A(·) is the right-continuous
compensator. To our knowledge, this influence curve representation was derived and
interpreted in a series of papers, beginning with Robins and Rotnitzky (1992).

Once again, the robustness result (5) implies that µn,Q = 1
n

∑n
i=1D(Oi|G0, Q) would

be unbiased for any Q ∈ Q = {Q(F ) : F ∈ F}. The first term in D(O|G0, Q) is an
unbiased inverse probability of censoring weighted function, as discussed in Robins
and Rotnitzky (2005), while the martingale term has mean zero for any Q. Unlike in
two-phase prevalence studies or randomized experiments, the unbiased µn,Q couldn’t
be applied directly, because the coarsening mechanism G0 is not exactly known. It is
now a nuisance parameter, and we consider efficiently estimating it with Gn based on
the Kaplan-Meier fit. As discussed in Section 2, efficiently estimating the coarsening
mechanism can never hurt asymptotically, and 1

n

∑n
i=1 D(Oi|Gn, Q) will be no less

asymptotically efficient than the (unavailable) unbiased 1
n

∑n
i=1D(Oi|G0, Q).

We could attempt constructing a fully efficient estimator for this problem, by con-
sistently estimating Q(F0)(c,W ) = PF0(T > t|T > c,W ) with a Qn, and then applying
µn = 1

n

∑n
i=1D(Oi|Gn, Qn). While the estimator’s asymptotic variance could be much

smaller than Kaplan-Meier’s, asymptotic efficiency isn’t always advisable. Consistently
fitting Q(F0) could be a difficult smoothing exercise, and Qn might not well approxi-
mate Q(F0) for reasonable sample sizes.

Chapter 3 of van der Laan and Robins (2003) reviews methods for locally efficient
estimation in general right censored data structures, which can be applied when es-
timating a marginal survival curve. Along these lines, Zeng (2004) considers locally
efficient estimation of marginal survival based on a combination of Cox modeling and
smoothing. Similar semiparametric working models are proposed in Satten et al. (2001)
and Scharfstein and Robins (2002) for marginal survival. It is fair to say that work in
this area has primarily been directed toward using covariates to correct for dependent
censoring ¬{T ⊥ C}, rather than to increase efficiency. In fact, Satten et al. state
that when clinically informative covariates are believed to have no effect on censoring
as in (12), their estimator reduces to the Kaplan-Meier curve.

In locally efficient estimation, one fits a relatively small working model F0 with Fn

for the full data distribution, and takes Qn(c,W ) = PFn(T > t|T > c,W ) for use in
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µn = 1
n

∑n
i=1D(Oi|Gn, Qn). Because only the conditional law L(T |W ) matters for the

Q(F0) appearing in the efficient influence curve, it suffices to model this conditional
distribution, and ignore the marginal covariate distribution. Under our independence
assumption (12), asymptotic efficiency is achieved for a correctly specified working
model F0, while misspecification does not compromise asymptotic linearity.

In almost all survival analysis applications, the most frequently used working model
for conditional survival time is Cox’s (1972) proportional hazards model. Parametrized
by a coefficient vector β and baseline cumulative hazard function Λ0(·), it induces the
working index set

Q0 = {Qβ,Λ0(c,W ) = exp(−eβT W {Λ0(t ∨ c) − Λ0(c)}) : β ∈ IRp,Λ0(·)}. (13)

The coefficient vector β is typically fit through Cox’s well-known partial likelihood
technique, while the baseline cumulative hazard Λ0(·) is fit using Breslow’s (1974)
estimator. As in previous examples, we stress that locally efficient estimation based on
the Cox model fit of Q(F0) is entirely different from estimating marginal survival with
the Cox model plug-in estimator.

While partial likelihood converges to the true model parameters if the proportional
hazards model is correct, there is no reason to believe such estimation will generally
converge to the optimal Q0 for estimating marginal survival. We represent asymptotic
variance σ2(Q) in the following theorem, proven in the appendix.

Theorem 2. Let φ(c, T̃ ) = 1 −A(c) + limu↑c A(u), where our notation expresses that
the compensator A(·) is a random process depending on T̃ . The limit in the definition
will exist as the compensator is right continuous. Then,

σ2(Q) = VarP0(D(O|G0, Q)) = EP0 [D
2(O|G0, Q)]− µ2(F0)

= C(P0) + E(O,C)∼P0×G0
[α(T̃ , C)Q2(C,W )− 2β(∆, T̃ , C)Q(C,W )],

for

C(P0) = −µ2(F0) + EP0 |
∆I(T̃ > t)

Ḡ0(T̃−)
|2

not depending on Q, and

α(T̃ , C) =
I(T̃ ≥ C)φ(C, T̃)

Ḡ2
0(C)Ḡ0(C−)

β(∆, T̃ , C) =
∆I(T̃ > t)I(T̃ ≥ C)

Ḡ0(T̃−)Ḡ0(C)Ḡ0(C−)
.

We can take φ(C, T̃ ) = 1 if the censoring variable C has a density under G0. In this
case, completing the square gives the immediate implication that σ2(Q) is monotone
increasing in the weighted mean squared error,

E(O,C)∼P0×G0

{
I(T̃ ≥ C)

Ḡ3
0(C)

|∆I(T̃ > t)Ḡ0(C)

Ḡ0(T̃ )
−Q(C,W )|2

}
.
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The theorem reveals that for a continuous censoring variable C, the optimal Q ∈ Q0

minimizes a weighted mean squared error. The empirical efficiency maximization idea
is to select Q ∈ Q0 by minimizing 1

n

∑n
i=1 D

2(Oi|Gn, Q). We can equivalently seek
the optimal working model element by replacing the unknown data generating dis-
tribution P0 with the empirical distribution IPn in E(O,C)∼P0×G0

[α(T̃ , C)Q2(C,W ) −
2β(∆, T̃ , C)Q(C,W )], and plugging-in an efficient estimate Gn for the censoring mech-
anism G0. The objective function then becomes a double integral with respect to IPn

and Gn, which can easily be evaluated by Monte Carlo. As in two-phase prevalence
estimation, we take the liberty of claiming this modified optimization falls under the
rubric of empirical efficiency maximization. The procedure can be stated as follows:

1. Draw {wb, δb, t̃b}B
b=1 from {Wi,∆i, T̃i}n

i=1 with replacement

2. Draw B i.i.d. replicates {cb}B
b=1 from Gn.

3. Form αb = α(t̃b, cb) and βb = β(δb, t̃b, cb) for b = 1, ..., B, with Gn substituted for
G0.

4. Choose Q ∈ Q0 to minimize 1
B

∑B
b=1{αbQ

2(cb, wb) − 2βbQ(cb, wb)}.

When we know the censoring time C has a density, our theorem tells us we can reduce
the algorithm to:

1. Draw {wb, δb, t̃b}B
b=1 from {Wi,∆i, T̃i}n

i=1 with replacement

2. Draw B i.i.d. replicates {cb}B
b=1 from Gn.

3. Form weights ab = I(t̃b≥cb)

Ḡ3
n(cb)

and surrogate responses yb = δbI(t̃b>t)Ḡn(cb)

Ḡn(t̃b)
for b =

1, ..., B.

4. Choose Q ∈ Q0 to minimize the weighted squared error 1
B

∑B
b=1 ab|yb−Q(cb, wb)|2.

When the working model Q0 is induced by a Cox model as in (13), it may appear
that empirical efficiency maximization necessitates solving an infinite dimensional min-
imization problem, as we have to minimize our objective function over all monotone
baseline hazards Λ0(·). Fortunately, inspection of our algorithm reveals we only need
to evaluate Λ0(·) at survival endpoint t, and the unique censoring times in {cb}B

b=1 oc-
curing before time t. We thus only have to find a finite number of nonnegative hazards,
and the problem reduces to finite dimensional weighted nonlinear least squares, with
nonnegativity constraints for some parameters.

Interestingly, this Cox model fit will be quite different from the usual fit. Breslow’s
baseline cumulative hazard estimator only places mass at the unique failure times, while
our proposal is to place mass only at t and times c ≤ t in the support of estimated
censoring mechanism Gn. To intuitively understand why this is so, we need to observe
that Q(c,W ) will only be evaluated in D(O|G0, Q) at times c ≤ t in the support of
the censoring variable C. Estimated P0(T > c|W ) will not affect the locally efficient
estimator if c is greater than t or is outside the censoring variable’s support. However,
fits at such irrelevant times surely contribute to the (partial) likelihood, and standard
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methods can be suboptimal as a result. While not necessarily leading to a desirable fit
of the conditional distribution L(T |W ), our procedure is targeted toward estimating
the marginal survival parameter of interest. However, we must caution the appendix
templates have not yet been used to derive our empirical efficiency maximization esti-
mator’s asymptotics for the working Cox model.

By examining the efficient influence curve’s Q(F0)(c,W ) = PF0(T > t|T > c,W ),
and recalling the Kaplan-Meier estimator is efficient when no covariates are measured,
it immediately follows that the Kaplan-Meier estimator is asymptotically equivalent
to µn,Q = 1

n

∑n
i=1D(Oi|G0, Q) with Q(c,W ) = Q(c) = PF0(T > t|T > c). The

working index set Q0 induced by the Cox model clearly includes this function at β = 0
and appropriate baseline cumulative hazard function Λ0(·). Consequently, the efficient
choice of Q ∈ Q0 will at least lead to Kaplan-Meier efficiency. For general full data
working models F0, there is no reason why this must hold for Q(F ) ∈ Q0 at the F ∈ F0

minimizing Kullback-Leibler divergence from F0.
Empirical efficiency maximization could also be utilized for a covariate-adjusted

estimate of mean failure time EF0 [T ] (or more likely EF0[T ∧ t] for identifiability). The
extensions in Section 6.4 show how our method could as well be used to approximate
quantiles of L(T ), or other functionals. Using a substitution estimate based on a
covariate-adjusted survival curve, we could additionally use the technique of Section
6.2 to estimate the cumulative hazard at a point.

A drawback of our new locally efficient method is that we’ve targeted a univariate
parameter. Section 6 discusses multivariate extensions, but it is not clear how we could
best use a full data working model to fit an entire survival curve.

5.2 Asymptotic Variance Calculations

We explored estimation techniques by generating data structures as follows:

W ∼ Uniform(0, 1)

{T |W} ∼ N(
10

1 + exp(−η(W − 1
2
))
, 2.52)

P (C = 3) = P (C = ∞) =
1

2
.

Here η was a model misspecification parameter. The value η = 0 corresponded to a
null model in which the covariate W was completely uninformative for survival, which
was a special case of the Cox model, and we varied η from 0 to 3 in steps of 0.1.
The censoring variable C corresponded to flipping a fair coin, and either censoring
a subject at time 3 or not censoring at all. We considered estimating the five-year
survival µ(F0) = PF0(T > 5).

In these simple simulations, D(O|G0, Q) only required evaluating Q(c,W ) at c = 3,
so we reduce notational overhead by writing Q(W ). From knowledge of the censoring
mechanism, which we here assume, one can check that,

D(O|G0, Q) = 2I(T̃ > 5) + [2(1 − ∆) − I(T̃ ≥ 3)]Q(W ),
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and that, σ2(Q) = EP0 [D
2(O|G0, Q)] − µ2(F0) is monotone in the weighted squared

error EP0 [I(T̃ ≥ 3)|2I(T̃ > 5) − Q(W )|2]. Empirical efficiency maximization thus
reduced to selecting a working set Q0, and finding the Qn ∈ Q0 to minimize a weighted
least squares. Using a working Cox model for local efficiency, the working index set Q0

was parametrized through

Qβ1,Λ0(W ) = Pβ1 ,Λ0(T > 5|T > 3,W ) = exp(−eβ1W (Λ0(5) − Λ0(3)))

= exp(−eβ0+β1W ),

for β0 = log(Λ0(5) − Λ0(3)).
Hence, we considered estimators µn,(β0,β1) = 1

n

∑n
i=1 D(Oi|G0, Qβ0,β1). For each

model misspecification parameter η, we evaluated the limiting (β0, β1) of partial likeli-
hood maximization and empirical efficiency maximization, through generating a dataset
with sample size n = 100, 000. As in the two-phase study example, the weighted non-
linear least squares in empirical efficiency maximization was solved with the nls()
function in the R language. This simulated dataset also allowed us to find survival
probability µ(F0) = PF0 (T > 5) via Monte Carlo. Using a new independent sample of
the same size, we then computed asymptotic variances for the two estimators by evalu-
ating 1

n

∑n
i=1 D

2(Oi|G0, Q)− µ2(F0). Additionally, we computed asymptotic variances
for the Kaplan-Meier influence curve’s Q(W ) = PF0(T > 5|T > 3), and the efficient
influence curve’sQ(F0)(W ) = PF0(T > 5|T > 3,W ). The former was a constant, found
in the initial Monte Carlo simulation, while the latter was known by design.

Asymptotic variance results for the four estimators are displayed in Figure 3. Sur-
prisingly, we lost precision when attempting to utilize informative covariates and fit a
locally efficient Cox model with partial likelihood. Such a technique appeared worse
than ignoring covariates altogether, and using the Kaplan-Meier estimator. When the
working Cox model was instead fit with empirical efficiency maximization, performance
greatly improved, and we saw that covariate W enhanced estimation. An important
phenomenon shown in both this simulation and previous simulations is that even with
a misspecified working model, elements of the working model can lead to estimators
that are extremely close to being fully efficient for our parameter, and likelihood based
estimates do not always converge to these elements.

5.3 Comparing Survival Distributions

We now sketch how empirical efficiency maximization might be used for the two-sample
problem with right censoring. Suppose binary A ∈ {0, 1} defines two strata of interest,
and can be pulled out of baseline covariate vector W so that the observed data is

O = (W,A,∆ = I(T ≤ C), T̃ = min(T,C)).

In a randomized trial, A could correspond to a treatment indicator. Interest
might lie in testing whether A is associated with survival, meaning the conditional
law L(T |A = 1) differs from L(T |A = 0). As our method can estimate a survival
probability at a point PF0(T > t), the cumulative hazard at a point, mean survival, or
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Figure 3: 1 − 4 represent the Kaplan-Meier estimator that ignores covariates, a lo-
cally efficient estimator based on a misspecified Cox model fit with the usual partial
likelihood technique and Breslow baseline cumulative hazard, an empirical efficiency
maximization estimator based on the Cox model, and the efficient estimator. The
Kaplan-Meier estimator ignoring covariates outperformed the likelihood based locally
efficient procedure. Empirical efficiency maximization essentially led to full efficiency.

median survival, it would be straightforward to estimate the difference in such quanti-
ties between two distributions, such as µ(F0) = PF0(T > t|A = 1)− PF0(T > t|A = 0).
We could then test the null hypothesis that µ(F0) = 0.

While the parameters we mentioned would be legitimate for testing, they are not
commonly used in survival analysis. Let Λ1(·) and Λ0(·) denote the cumulative haz-
ard functions for the two distributions. Chapter 7 of Fleming and Harrington (1991)
reviews how many test statistics are n−1/2-scaled versions of

µn =

∫
Kn(t)d{Λ1,n(t)− Λ0,n(t)}, (14)

for Nelson-Aalen fits of the baseline hazards. For Kn → K(P0), such µn can converge
to parameter

µ(P0) =

∫
K(P0)(t)d{Λ1(t) −Λ0(t)}.

The popular logrank statistic is of this form, with

K(P0)(t) = P0(A = 1)P0(A = 0)
P0(T̃ > t|A = 1)P0(T̃ > t|A = 0)

P0(T̃ > t)
.

We could attempt to more precisely estimate this parameter with covariate ad-
justment, and thus increase power when testing H0 : µ(P0) = 0. Unfortunately, sev-
eral complications arise. Because the function K(P0)(·) can depend on the censoring
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mechanism for weighted logrank statistics, parameter µ(P0) often won’t be a full data
parameter µ(F0). Even without this problem, we would still be outside the general
formulation in Section 2, because the parameter wouldn’t be a full data population
mean µ(F0) = EF0 [ψ(X)]. Moreover, the full data efficient influence curve would have
no variation independent parametrization in terms of the parameter of interest and a
nuisance parameter, so wouldn’t be covered by the theory of van der Laan and Robins
(2003) or Tsiatis (2006), and we couldn’t apply our extended estimating function based
empirical efficiency maximization of Section 6.4. However, as with the (log) relative
risk and (log) odds ratio in Section 4, we could consider covariate-adjusted substitution
estimators, discussed more generally in Section 6.2.

For F in full data working model F0, the previous subsection considered covariate-
adjusted marginal survival estimates at a time t. By using the estimator at differ-
ent times t, one arrives at a (possibly improper) estimator of the entire curve. This
could be carried out for the {A = 1} and {A = 0} groups. Marginal survival fits
S1,n and S0,n could then be mapped into covariate-adjusted baseline hazard fits via

Λj,n(·) =
∫ ·
−∞

dS̄j,n(t)

Sj,n(t−)
, which would be entered into the µn of (14) for a covariate-

adjusted parameter estimate.
If we could derive this estimator’s influence curve IC(O|G0, F, η(P0)), we could

estimate nuisance parameter η(P0), and empirically approximate asymptotic variance
σ2(F ) = EP0 [IC

2(O|G0, F, η(P0))] with σ̂2(F ) = 1
n

∑n
i=1 IC

2(Oi|Gn, F, ηn), and at-
tempt to minimize over F in a full data working model F0 to make the optimal covariate
adjustment for the parameter of interest µ(P0).

At fixed alternatives µ(P0) 6= 0, most tests have power converging to one, and
hence interest has traditionally concerned power at local alternatives. It can be shown
that at local alternatives Λ1(t) = Λ0(t) + n−1/2h(t), the asymptotics would be as if
K(P0)(·) were fixed and known, and we can finesse the issue of estimating a parameter
depending on the coarsening mechanism.

Obviously, this is a very preliminary preview of what empirical efficiency maxi-
mization would entail for comparing survival distributions, and we intend to elabo-
rate in the near future. To mention related work, Lu (2006) gave a talk presenting
covariate-adjusted tests asymptotically outperforming the logrank procedure when the
L(T |A = 1) and L(T |A = 0) distributions obey proportional hazards. The forthcoming
article of Lu and Tsiatis (2007) will apparently expound.

6 Extensions

In Section 2, we restricted attention to estimating univariate full data population means
of the form µ(F0) = EF0 [ψ(X)] ∈ IR. This was meant to be expository, and empirical
efficiency maximization in this limited setting can go a long way. Slight modifications
are required to attack more general parameters, and in this section we informally sketch
how one might proceed.
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6.1 Multivariate Parameters

A drawback of empirical efficiency maximization is that there is no straightforward
generalization to estimating multivariate parameters µ(F0) = [µ1(F0), ..., µk(F0)]

T ∈
IRk. It is not necessarily true that within a misspecified full data submodel F0 ⊂ F ,
there is a single F making 1

n

∑n
i=1[D1(Oi|G0, Q(F )), ...,Dk(Oi|G0, Q(F ))]T as efficient

as possible, meaning this is the best F ∈ F0 for approximating any linear combination
of [µ1(F0), ..., µk(F0)]

T .
Of course, multivariate parameter estimation can be handled by breaking the prob-

lem into k univariate pieces. While often applicable, such a technique could give
unorthodox answers when parameters are known to obey certain orderings, such as
when estimating a survival curve at k time points.

Another approach is to represent the influence curve of multivariate parameter
estimate µn = [µn,1, ..., µn,k]

T as the vector

IC(O|G0, Q(F ), µ(F0)) = [IC1(O|G0, Q(F ), µ(F0)), ..., IC(O|G0, Q(F ), µ(F0))]
T .

With a consistent preliminary parameter estimate µ̂n, the asymptotic covariance matrix
(of the estimator applied with known coarsening mechanism) could be approximated
empirically with

Σ̂(F ) =
1

n

n∑

i=1

IC(Oi|Gn, Q(F ), µ̂n)IC(Oi|Gn, Q(F ), µ̂n)
T .

Empirical efficiency maximization could then operate by defining a norm ‖ · ‖ on co-
variance matrices, and trying to minimize ‖Σ̂(F )‖ over a working model F0 ⊂ F . To
reiterate, there might be no “best” F for estimating all components of the parameter
if the working model is misspecified.

6.2 Substitution

Returning to univariate estimation, we saw in Section 4 how our approach could handle
parameters of the form f(µ1(F0), ..., µk(F0)) ∈ IR, where µj(F0) was a population mean.
The efficient influence curve of µn,j was

ICj(O|P0) = Dj(O|G0, Qj(F0)) − µj(F0).

We considered estimators µn,j = 1
n

∑n
i=1Dj(Oi|G0, Qj(F )), and applied the substitu-

tion fn = f(µn,1, ...µn,k) for the parameter of interest. The working index set is induced
by full data working model F0 through

Q0 = {(Q1(F ), ..., Qk(F )) : F ∈ F0}.

Using the delta method we found the influence curve

fn,(Q1,...,Qk) = f(µ1(F0), ..., µk(F0)) +
1

n

n∑

i=1

IC(Oi|G0, (Q1, ..., Qk), η(P0)) + oP0(n
−1/2).
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For any (Q1, ..., Qk) ∈ Q0, the asymptotic variance of fn,(Q1,...,Qk) was

σ2(Q1, ..., Qk) = EP0[IC
2(Oi|G0, (Q1, ..., Qk), η(P0))].

Using a fit ηn for the influence curve’s nuisance parameter, asymptotic variance could be
approximated with the empirical mean 1

n

∑n
i=1 IC

2(Oi|G0, (Q1, ..., Qk), ηn), and mini-
mized over Q0. The resulting Qn = (Qn,1, ..., Qn,k) could then be used to construct
parameter estimate, and make the most efficient use of our working model F0 among
substitution estimators fn = f(µn,1, ...µn,k).

6.3 Estimated Coarsening Mechanism

Even when the coarsening mechanism G0 is known, we have stressed how performance
improves if we estimate it with a Gn corresponding to an efficient estimate in a correctly
specified working model G0, and then apply µn = 1

n

∑n
i=1D(Oi|Gn, Q). Some may

be skeptical that our technique chooses the optimal Q in working index set Q0 for
estimating the parameter of interest. After all, we aim to minimize σ2(Q), or the
asymptotic variance of 1

n

∑n
i=1D(Oi|G0, Q) applied withG0 known. We could minimize

a loose upper bound for asymptotic variance, and select a suboptimal Q ∈ Q.
The influence curve of 1

n

∑n
i=1 D(Oi|Gn, Q) can be found by computing the projec-

tion in Theorem 2.3 of van der Laan and Robins (2003). It may be possible to use this
influence curve to empirically approximate asymptotic variance, and jointly fit working
models G0 and Q0 to produce the most efficient parameter estimate. However, our gut
feeling is that this would usually be overkill.

6.4 Estimating Equations

Obviously not all parameters of interest are full data population means, or simple func-
tions of such means. Empirical efficiency maximization can be generalized for the types
of parameters considered in van der Laan and Robins (2003): those solving estimat-
ing equations. Suppose µ(F0) ∈ IR is defined as the solution to 0 = EF0 [ψ(X|ρ(F0), µ].
Here ρ(F0) is a nuisance parameter. If the full data {Xi}n

i=1 were available, and we could
approximate the nuisance parameter at a fast enough rate with ρn, we could estimate
µ(F0) with the solution µn of 0 = 1

n

∑n
i=1 ψ(Xi|ρn, µ). Under identifiability and regu-

larity conditions, µn would be asymptotically linear. In a nonparametric (saturated)
full data model, any other asymptotically linear estimator would be asymptotically
equivalent to it, so ψ would in a sense be the unique estimating function.

van der Laan and Robins (2003) discuss mapping a full data estimating function ψ
into estimating functions suitable for the observed data {Oi}n

i=1. Applying the doubly
robust mapping in their Theorem 2.1 at PF,G0 (for F not necessarily equal to F0)
gives rise to the estimating function D(O|G0, Q(F ), ρ(F0), µ(F0)), with the robustness
property that

EPF0 ,G0
[D(O|G0, Q(F ), ρ(F0), µ(F0))] = 0 for any F ∈ F .
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With the observed data, we could then form a parameter estimate µn by solving

0 =
1

n

n∑

i=1

D(Oi|G0, Q(F ), ρn, µ).

Under additional identifiability and regularity conditions, noted by van der Laan and
Robins, the estimator will be asymptotically linear with influence curve

µn = µ(F0) +
1

n

n∑

i=1

c(P0)D(Oi|G0, Q(F ), ρ(F0), µ(F0)) + oP0(n
−1/2).

As with the simpler parameters already considered, efficiently estimating the coarsening
mechanism with Gn from a correctly specified submodel can only help asymptotic
variance. The Q(F ) minimizing asymptotic variance is Q(F0), meaning it is best to
apply the doubly robust mapping of full data estimating equation ψ at P0 = PF0 ,G0, and
efficient estimators can often be constructed by approximating Q(F0) in the estimating
equation. When the function approximation problem becomes too difficult, locally
efficient estimation proceeds by fitting F in a working model F0 for the full data
generating distribution, or equivalently Q in the induced working index set Q0 =
{Q(F ) : F ∈ F0}. We propose empirically targeting such a fit to maximize efficiency.

The influence curve’s constant c(P0) is given by

c(P0) = −{ d
dµ
EP0 [D(O|G0, Q(F ), ρ(F0), µ)]|µ=µ(F0)}−1.

It can be shown that this constant does not depend on Q(F ). We will not provide a
formal proof, but the reasoning is very simple, for those acquainted with the censored
data efficiency theory as presented in van der Laan and Robins (2003) or Tsiatis (2006).
The expectation of D(O|G0, Q(F ), ρ(F0), µ) can be represented as the expectation of
an inverse probability of censoring weighted term added to the expectation of a term
the augmentation space. The former doesn’t depend on Q(F ), while the latter is zero
for any µ ∈ IR and Q(F ).

Because the constant doesn’t depend on the F at which the doubly robust map-
ping is applied, the asymptotic variance σ2(Q) of the estimating equation estimator is
monotone in EP0 [D

2(Oi|G0, ρ(F0), µ(F0))]. With a coarsening mechanism estimate Gn,
a preliminary parameter estimate µ̂n, and a nuisance parameter estimate ρn, this can
be approximated with 1

n

∑n
i=1 D

2(Oi|Gn, Q(F ), ρn, µ̂n), and minimized over a working
index set Q0.

7 Related Methods

By no means are we the first authors to show how covariate information can guarantee
asymptotic improvements over unadjusted estimators. If the unadjusted technique
is an inverse probability of censoring weighted (IPCW) method such as the Horvitz-
Thompson estimator, asymptotic efficiency increases when using a larger correctly
specified coarsening mechanism model G0 ⊂ G. Hence, while we have been discussing
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the estimation problem as being defined by the choice of full data working model F0,
another representation defines it by the size of the coarsening model G0 containing G0.

Dimensionality problems can of course arise when either model becomes too large,
and van der Laan and Robins (2003) recommend using relatively small working models
G0 and F0. While estimation is usually straightforward in a correctly specified model
G0, this work has focused on how to fit Fn ∈ F0. This full data distribution may
sometimes be more conducive to modeling, because the Qn = Q(Fn) fit isn’t used
for potentially unstable inverse weighting in the resulting estimator, and consequently
doesn’t require artificial truncation away from zero.

Because empirical efficiency maximization differs from existing methods, several
comparisons are in order.

7.1 Doubly Robust Estimation

To construct doubly robust estimates of coarsened data parameters, one fits a full data
submodel with Fn ∈ F0 and a coarsening mechanism submodel with Gn ∈ G0, and uses
these fits as nuisance parameter estimates in a well-chosen estimating equation for the
parameter of interest. Under regularity conditions, the resulting parameter estimate
will be asymptotically linear if either the F0 or G0 working model is correctly specified.
This is possible because the doubly robust mapping of a full data estimating function
ensures it is unbiased if either F = F0 or G = G0. We refer to van der Laan and Robins
(2003) and the references therein for more details.

Under missingness/coarsening at random, the observed data likelihood dPF,G(O)
factorizes into a component depending on the coarsening mechanism G, and a compo-
nent depending on the full data distribution F . Maximizing likelihood in the submodel

M0 = {PF,G : F ∈ F0, G ∈ G0}

thus splits into two separate maximizations, and a poor fit in one will not compromise
the other. Hence, overviews of locally efficient estimation in van der Laan and Robins
(2003) and Tsiatis (2006) have focused on fitting working models G0 and F0 with max-
imum likelihood, then applying these fits as nuisance parameter estimates in observed
data estimating equations.

Bang and Robins (2005) make a convincing argument for doubly robust procedures
in observational studies, because they give data analysts two chances for (nearly) cor-
rect model specification. Many have proposed the same likelihood based locally effi-
cient estimators for randomized experiments, because the efficient influence curve can
be identical under coarsening at random, and efficiently estimating a known G0 can
only improve asymptotic variance.

But in controlled experiments, robustness against a misspecified coarsening mecha-
nism model G0 is superfluous. Right censored data has similar structure when censoring
is due to the experimenter rather than the subject - essentially whenever the Kaplan-
Meier estimator, or the most basic survival analysis, is justified. Empirical efficiency
maximization sacrifices this unnecessary robustness for precision. We improve upon
the maximum likelihood fit of the full data working model F0, but must generally rely
on a correctly specified coarsening model to do so.
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7.2 Restricted AIPWCC Estimators

Perhaps the approach bearing most resemblance to empirical efficiency maximization is
the (class 1) “restricted AIPWCC” (restricted augmented inverse probability weighted
complete-case) technique discussed in chapter 12 of Tsiatis (2006), and applied in
survival analysis settings by Bang and Tsiatis (2000, 2002). Such estimators have ben-
eficial properties not shared by standard locally efficient procedures, in that they can
ensure efficiency gains relative to unadjusted analysis. Nevertheless, our impression
is that chapter 11 of Tsiatis previews such estimators as substitutes for locally effi-
cient estimators, to be used when more computationally feasible. This may require
clarification.

Tsiatis represents the augmentation space {h(O) ⊂ L2
0(P0) : E[h(O)|X] = 0} with

a finite-dimensional basis, and elegantly derives the optimal linear combination of basis
elements to augment to an inverse probability of censoring weighted estimating func-
tion, which holds for univariate or multivariate parameters. In the two-phase design,
excess risk, and marginal survival curve examples considered in previous sections, this
reduces to using a working index set

Q0 = {
m∑

j=1

cjQj : (c1, ..., cm) ∈ IRm}, (15)

where Q1, ..., Qm are pre-specified elements of Q = {Q(F ) : F ∈ F}. Assuming
a correctly specified coarsening mechanism model, Tsiatis derives the optimal linear
combination Q ∈ Q0, that could be applied in a locally efficient parameter estimate.

It is clear that the representation (15) does not hold for all working index sets
Q0 induced by a working model F0 in locally efficient procedures. For example, the
working index set Q0 induced by the Cox model is not finite-dimensional. In the
two-phase design problem, the logistic regression model gives rise to working index set

Q0 = {Qβ(w) =
1

1 + exp (−βTw)
: β ∈ IRp},

and these functions cannot be contained in the linear span of finitely many functions.
Restricted AIPWCC estimators may not be desirable in two-phase prevalence estima-
tion, because the efficient Q(F0)(W ) = PF0(Y = 1|W ) has range [0, 1], so wouldn’t
typically be represented with a basis expansion. Tsiatis et al. (2000, revised 2006)
instead considered using a logistic regression working model for locally efficient esti-
mation in developing a clinical trial strategy for the related exess risk problem, but
seemingly restricted to standard maximum likelihood fits.

One can think of empirical efficiency maximization as considering a general collec-
tion of augmentation space elements, and attempting to empirically find the optimal
one to augment to a univariate estimator’s inverse probability weighted influence curve.

8 Discussion

While we’ve presented a new set of methods heuristically meliorating locally efficient
estimators, much work remains. In particular, we have not formally proven claimed
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asymptotic results for our estimators µn defined in the prevalence estimation, treatment
effect, and survival analysis problems. Templates for proving asymptotic linearity are
provided in the appendix, but conditions for our specific estimators have not yet been
verified. We hope our covariate adjustment proposals stimulate technical empirical
process analysis, in addition to computational research focusing on how to solve our
new class of optimization problems.

Moreover, the i.i.d. scheme we presented for two-phase studies and randomized
experiments was clearly an unrealistic approximation to how sampling would occur,
and empirical efficiency maximization results must be extended beyond this setting.

In addition, we plan to supplement our Monte Carlo asymptotic efficiency calcu-
lations with simulations and data analysis. These should help gauge performance for
reasonable sample sizes.

One part of our argument may appear circular or flawed. We noted efficient es-
timators are often eschewed because their

√
n-asymptotics wouldn’t encapsulate per-

formance in actual datasets, yet our subsequent analysis of locally efficient estimators
was based entirely on

√
n-asymptotics. Our intuition was that such asymptotics could

well guide performance in moderately sized samples, for a sufficiently constrained full
data working model F0.

The method may be of interest in clinical trials, where adjustment for continuous,
binary, and time-to-event outcomes is often carried out with linear, logistic, and pro-
portional hazards models. When used in the correct intermediate step of estimator
construction, and fit in a nonstandard manner, misspecified working models can guar-
antee increased precision from covariate information under virtually no assumptions.

We have not touched on inference. While 1
n

∑n
i=1D

2(Oi|Gn, Qn)−µ2
n may seem like

a natural estimate for the asymptotic variance of our µn, it can be inappropriate. If the
coarsening mechanism is estimated from a correct model, it will converge to asymptotic
variance of the estimator applied with G0 known, which will be an overestimate. More
seriously, it could underestimate the variance of

√
n(µn − µ(F0)) because of a finite

sample overfitting bias. Our initial recommendation is to construct confidence intervals
using the bootstrap.

In spite of the remaining work to be done, empirical efficiency maximization ap-
pears promising. In coarsened data problems where the coarsening mechanism is well
understood, our method directly targets the optimal working model element for esti-
mating a parameter of interest, enhancing locally efficient estimation, and providing a
new tool for covariate adjustment in randomized experiments and survival analysis.

Appendix 1: Proofs of Theorems 1 and 2

Proof of Theorem 1. Let Q?(W ) = Q(F0)(W ) = EF0 [Y |W ], note that ∆2 = ∆
as ∆ ∈ {0, 1}, and that E[Y∆|W ] = Q?(W )π0(W ) as Y and ∆ are conditionally
independent given W . We observe that,

Var(D(O|π0, Q)) = E[D2(O|π0, Q)] − µ2

= E[| ∆Y

π0(W )
|2] + 2T1 + T2 − µ2, (16)
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for

2T1 = 2E[
∆Y

π0(W )
(1 − ∆

π0(W )
)Q(W )]

= 2E[Q(W )(
1

π0(W )
− 1

π2
0(W )

)∆Y ]

= 2E[Q(W )(
1

π0(W )
− 1

π2
0(W )

)E[∆Y |W ]]

= 2E[Q(W )(
1

π0(W )
− 1

π2
0(W )

)Q?(W )π0(W )]

= −2E[
1 − π0(W )

π0(W )
Q?(W )Q(W )], (17)

and

T2 = E[(1 − ∆

π0(W )
)2Q2(W )]

= E[(1 − 2
∆

π2
0(W )

+
∆

π2
0(W )

)Q2(W )]

= E[Q2(W )(1 − 2
P (∆ = 1|W )

π0(W )
+
P (∆ = 1|W )

π2
0(W )

)]

= E[Q2(W )(1 − 2 +
1

π0(W )
]

= E[
1 − π0(W )

π0(W )
Q2(W )]. (18)

Combining (16), (17), and (18) we obtain,

Var(D(O|π0, Q)) = −µ2 + E[| ∆Y

π0(W )
|2] + E[

1 − π0(W )

π0(W )
(Q2(W ) − 2Q?(W )Q(W ))].

The desired result follows after completing the square for |Q?(W )−Q(W )|2, and not-
ing that E[|Q?(W ) − Q(W )|2|W ] = E[|Y − Q(W )|2|W ] − E[|Y − Q?(W )|2|W ]. The

final step is observing EP0 [
1−π0(W )
π0(W )

|Y − Q(W )|2] = EP0 [∆
1−π0(W )

π2
0(W )

|Y − Q(W )|2], as it

is easy to check that EP0 [
∆

π0(W )
ψ(W,Y )] = EP0 [ψ(W,Y )] for any integrable ψ(W,Y ). �

Proof of Theorem 2. We first note that the counting process N(·) only jumps

33
Hosted by The Berkeley Electronic Press



when ∆ = 0, and that ∆(1 − ∆) = 0. Hence,

EP0

{
∆I(T̃ > t)

Ḡ0(T̃−)

}{∫
Q(c,W )

Ḡ0(c)
dM(c)

}

= EP0

{
∆I(T̃ > t)

Ḡ0(T̃−)

}{∫
Q(c,W )

Ḡ0(c)
(dN(c) − dA(c))

}

= −EP0

{
∆I(T̃ > t)

Ḡ0(T̃−)

} {∫
Q(c,W )

Ḡ0(c)
dA(c)

}

= −EP0

{
∆I(T̃ > t)

Ḡ0(T̃−)

} {∫
Q(c,W )I(T̃ ≥ c)

Ḡ0(c)Ḡ0(c−)
dG0(c)

}

= −EP0

∫
∆I(T̃ > t)

Ḡ0(T̃−)

Q(c,W )I(T̃ ≥ c)

Ḡ0(c)Ḡ0(c−)
dG0(c)

= −EP0

∫
β(T̃ ,∆, c)Q(c,W )dG(c) = −

∫
{β(t̃, δ, c)Q(c, w)}dG0(c)dP0(w, δ, t̃)

= −E(O,C)∼P0×G0
[β(∆, T̃, C)Q(C,W )] (19)

Further, standard martingale results (i.e. Theorem 2.6.1 in Fleming and Harrington
(1991)), imply

EP0|
∫

Q(c,W )

Ḡ0(c)
dM(c)|2 = EP0

∫
|Q(c,W )

Ḡ0(c)
|2φ(c, T̃ )dA(c)

= EP0

∫
|Q(c,W )

Ḡ0(c)
|2φ(c, T̃ )I(T̃ ≥ c)

dG0(c)

Ḡ0(c−)

= EP0

∫
α(T̃ , c)Q2(c,W )dG0(c)

=

∫
α(t̃, c)Q2(c, w)dG0(c)dP0(w, t̃)

= E(O,C)∼P0×G0
[α(T̃ , C)Q2(C,W )] (20)

Squaring the sum D(O|G0, Q) and finding the expectation of the three terms with
(19) and (20) yields the desired result. �

Appendix 2: Proving Asymptotic Linearity

In this appendix, we’ll provide guidelines for proving empirical efficiency maximization
leads to an asymptotically linear estimator. Proofs might appear very familiar. They
should have the same structure as proofs for standard locally efficient estimators, where
the working index set Q0 corresponds to a working model F0 for the data generating
distribution, and is fit by maximum likelihood. The only difference is our new ob-
jective function, as we try to choose the Fn ∈ F0 minimizing the empirical mean of
D2(O|G0, Q(F )) rather − log dPF,G0(O).
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LetMn denote the stochastic process indexed by working index set D0 = {D(·|G0, Q) :
Q ∈ Q0}, given by Mn(D) = IPnD

2(O), and let M : D0 → IR denote the deterministic
function M(D) = P0D

2(O). Let the nuisance parameter estimate Qn ∈ Q0 be an
empirical efficiency maximizer satisfying,

1

n

n∑

i=1

D2(Oi|Gn, Qn) ≤ infD∈D0Mn(D) + oP0(1). (21)

Note that this should require the Gn → G0 convergence. We consider applying the
estimator IPn{D(·|Gn, Qn)}, and would like to prove its asymptotic linearity, meaning

IPn{D(·|Gn, Qn)} =
1

n

n∑

i=1

IC(Oi|P0) + oP0(n
−1/2) for IC(·|P0) ∈ L2

0(P0).

We will define D(·|G0, Q0) =argminD∈D0M(D) as the oracle’s element of D0 for esti-
mation of µ = µ(F0), and

(A) assume the minimizer D(·|G0, Q0) of EP0[D
2(O|G0, Q)] exists and is P0-unique.

Note the uniqueness refers to the function D(·|G0, Q0), and not to elements of working
index set Q0.

Our first step is to show our estimator is asymptotically equivalent to the estimator
we could construct if we knew the oracle’s nuisance parameter Q0, but still estimated
the coarsening mechanism G0 with Gn. That is,

IPn{D(·|Gn, Qn) −D(·|Gn, Q0)} = (IPn − P0){D(·|Gn, Qn) −D(·|Gn, Q0)}
+ P0{D(O|Gn, Qn) −D(O|Gn, Q0)}
= oP0(n

−1/2). (22)

To prove this asymptotic equivalence (22), we will likely need tools from empirical
process theory. We refer to van der Vaart and Wellner (1996) as a reference, particularly
for the formal framework in which the forthcoming statements should be understood.
A useful well-known result from empirical process theory is that if fn is a sequence of
functions, possibly randomly determined by the data {Oi}n

i=1, that (IPn −P0){fn(·)} =
oP0(n

−1/2) if P0f
2
n(O) → 0 in probability and there is a P0-Donsker class containing

fn with probability tending to one. In light of this fact, it is immediate that (22) is
satisfied under the following assumptions:

(B1) P0 {D(O|Gn, Qn) −D(O|Gn, Q0)} = oP0(n
−1/2).

(B2) There exists a subset G0 ⊂ G containing G0, and also containing Gn with proba-
bility tending to one, such that,

{D(·|G,Q) : G ∈ G0, Q ∈ Q0} is a P0-Donsker class of functions.

(B3) P0 {D(O|Gn, Qn) −D(O|Gn, Q0)}2 → 0 in probability.
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When will these assumptions be satisfied? (B1) will depend more on the parametric
Gn → G0 convergence rather than the Qn → Q0 convergence. Note that if G0 is known
and we take Gn = G0, then the condition will be satisfied with the right side equal to
zero, as EP0 [D(O|G0, Q)] = µ for all Q ∈ Q0.

Condition (B2) restricts the amount of nuisance parameters G and Q we’re allowed
to consider when constructing our estimator. If the coarsening mechanism G0 is known
and will be used in the estimator IPn{D(·|G0, Qn)}, then we can take G0 = {G0}.
Verification should be straightforward when working index set Q0 corresponds to a
familiar parametric or semiparametric working model such as a logistic regression or
Cox model.

To show (B3), first consider the case of G0 known, and examine the D(·|G0, Qn) →
D(·|G0, Q0) convergence. (When G0 is unknown but Q0 is a sufficiently restricted
working index set, we will typically only additionally need the consistency of Gn for
G0 in some sense.) Endow D0 = {D(·|G0, Q) : Q ∈ Q0} with the distance metric
d(D1,D2) =

√
P0|D1 −D2|2. Corollary 3.2.3(ii) of van der Vaart and Wellner (1996)

suffices under condition (A) if:

(C1) supD∈K|Mn(D) −M(D)| → 0 in probability for every compact K ⊂ D0,

(C2) The map D →M(D) is lower semicontinuous.

(C3) The sequence Dn = D(·|G0, Qn) is uniformly tight.

(C1) is a restriction on the size of our working index set Q0, as we will just need
for {D2(·|G0, Q) : Q ∈ Q0} to be a Glivenko-Cantelli class of functions. Like (B2),
this is usually no trouble to prove when estimating nuisance parameters using well-
known parametric or semiparametric working models. (C2) is an analytic rather than
probabilistic condition that we must prove by examining M(D) = P0D

2(O).
After we’ve used (B1)-(B3) and (C1)-(C3) to establish asymptotic equivalence of

IPn{D(·|Gn, Qn)} and IPn{D(·|Gn, Q0)} as in (22), there are two cases to consider. The
first is when the coarsening mechanism G0 is exactly known, and we take Gn = G0.
In such a setting, (22) tells us our estimator IPn{D(·|Gn, Qn)} is asymptotically linear
with influence curve,

IC0(O|P0) = D(O|G0, Q0) − µ(F0).

That is, our estimator and the oracle’s estimator are asymptotically equivalent. The
second case is when G0 isn’t known, but Gn is an asymptotically efficient estimate in
our model M, as in marginal survival curve estimation with independent censoring.
In this situation, we can write,

IPn{D(·|Gn, Q0)} − µ(F0) = (IPn − P0){D(·|Gn, Q0) −D(·|G0, Q0)}

+
1

n

n∑

i=1

IC0(Oi|P0)

+ Rn(Gn)

for
Rn(Gn) = P0{D(O|Gn, Q0) −D(O|G0, Q0)}.

36
http://biostats.bepress.com/ucbbiostat/paper220



Our previously mentioned empirical process result for showing (IPn − P0){fn(·)} =
oP0(n

−1/2) implies this can be reduced to

IPn{D(·|Gn, Q0)} − µ =
1

n

n∑

i=1

IC0(Oi|P0) +Rn(Gn) + oP0(n
−1/2) (23)

if the Donsker condition (B2) holds and we have the convergence,

(D) P0 {D(O|Gn, Q0) −D(O|G0, Q0)}2 → 0 in probability.

Verifying (D) should only require showing Gn → G0 in some sense, and not a rate or
efficiency result for this convergence. The remaining task is analyzing Rn(Gn). When
Gn is efficient for G in the model M, it should follow that:

(E1) There is an ICnuis(·|P0) with mean zero and finite variance under P0 such that

Rn(Gn) =
1

n

n∑

i=1

ICnuis(Oi|P0) + oP0(n
−1/2).

(E2) The function ICnuis(·|P0) belongs to the tangent space of the model M at P0, and
is orthogonal in L2

0(P0) to ICefficient(·|P0), the efficient influence curve (canonical
gradient) for estimation of µ(F0). That is,

< ICnuis(·|P0), ICefficient(·|P0) >L2
0(P0)= EP0 [ICnuis(O|P0)ICefficient(O|P0)] = 0.

We refer to Bickel, Klassen, Ritov, and Wellner (1998) for an overview of relevant
semiparametric theory, and formal definitions for the tangent space and efficient influ-
ence curve. In words, the tangent space is the linear closure in the Hilbert space L2

0(P0)
of the span of scores of regular parametric submodels of M passing through P0. The
efficient influence curve is a scaled version of the efficient score, or score of the regular
parametric submodel of M through P0 in which estimation of parameter µ = µ(F0) is
most difficult in terms of an information bound.

Condition (E1) implies that our estimator IPn{D(·|Gn, Qn)} is an asymptotically
linear estimator of parameter µ = µ(F0) at P0, with influence curve,

IC(O|P0) = IC0(O|P0) + ICnuis(O|P0).

To demonstrate (E1), we will once again usually need that Gn → G0 in some sense
at the parametric n−1/2 rate. One way to find ICnuis(·|P0) might be to first find the
influence curve of Gn as an estimator of G0, which could be infinite dimensional, and
then apply the functional delta method to the function G→ P0{D(·|G,Q0)}.

After finding ICnuis(·|P0), we can check the stronger condition (E2). This will
typically require Gn to not only approach G0 at the n−1/2 rate, but to be efficient for
G0 in the coarsening mechanism model G0. The benefit of (E2) is that it implies the
influence curve IC(O|P0) has variance no larger than that of IC0(O|P0). This means
our estimator built from nuisance parameters Gn and Qn is as asymptotically efficient
as the estimator IPn{D(·|G0, Q0)} we could use if knowing the coarsening mechanism

37
Hosted by The Berkeley Electronic Press



G0 and the oracle’s nuisance parameter Q0 ∈ Q0. For a formal justification of this well-
known but somewhat paradoxical result that efficiently estimating a known coarsening
mechanism can only improve an estimator’s asymptotics, we refer to Theorem 2.3 of
van der Laan and Robins (2003).

To summarize, we propose using the estimator IPn{D(·|Gn, Qn)}, where Qn is the
empirical efficiency maximizer satisfying (21). Under checkable conditions, this estima-
tor is asymptotically linear and at least as asymptotically efficient as the oracle estima-
tor IPn{D(·|G0, Q0)}. Existence and uniqueness of this efficiency maximizing Q0 ∈ Q0

are assumed in (A). (C1)-(C3) are useful for demonstrating a Qn → Q0 convergence
to prove (B1)-(B3), and (B1)-(B3) imply IPn{D(·|Gn, Qn)} and IPn{D(·|Gn, Q0)} are
asymptotically equivalent as in (22). If using Gn = G0, this result (22) reveals asymp-
totic equivalence with IPn{D(·|G0, Q0)}. If Gn is instead an efficient estimate of the
coarsening mechanism G0, our estimator is still at least this efficient under (E1), (E2),
and (23), where (23) follows from (B2) and (D).
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