17,833 research outputs found
A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles
The development of accurate constitutive models of fibrous soft-tissues is a challenging problem. Many consider the tissue to be a collection of fibres with a continuous distribution function representing their orientations. A novel discrete fibre model is presented consisting of six weighted fibre bundles. Each bundle is oriented such that they pass through opposing vertices of a regular icosahedron. A novel aspect of the model is the use of simple analytical distribution functions to simulate the undulated collagen fibres. This approach yields a closed form analytical expression for the strain energy function for the collagen fibre bundle that avoids the sometimes costly numerical integration of some statistical distribution functions. The elastin fibres are characterized by a neo-Hookean strain energy function. The model accurately simulates the biaxial stretching of rabbit-skin (error-of-fit 8.7%), the uniaxial stretching of pig-skin (error-of-fit 7.6%), equibiaxial loading of aortic valve cusp (error-of-fit 0.8%), and the simple shear of rat septal myocardium (error-of-fit 9.1%). The proposed model compares favourably with previously published soft-tissue models and alternative methods of representing undulated collagen fibres. The stiffness of collagen fibres predicted by the model ranges from 8.0 MPa to 0.93 GPa. The stiffness of elastin fibres ranges from 2.5 kPa to 154.4 kPa. The anisotropy of model resulting from the representation of the fibre field with a discrete number of fibres is also explored
Tourism development in Kuwait: examining the political-economic challenges in a unique rentier economy
This article explores the challenges Kuwait faces to develop tourism due to the particularly unique political-economic system of popular rentierism. Kuwait’s tourism industry is relatively underdeveloped in comparison to other Gulf Cooperation Council countries and has not received much attention by tourists, policy-makers, and scholars. This study provides both a macro-level analysis of the political economic obstacles to tourism development in Kuwait and the more micro-level challenges that have resulted, particularly in relation to proposed mega-development projects. While insights from this study are useful for understanding the role of tourism in the rentier economies, this study also further theorises tourism within the field of international relations and political economy and shows how tourism development is of particular importance for public diplomacy in the current global arena
Scout motor performance analysis and prediction study /PAPS/
Scout motor performance analysis and predictio
Evolution of Primordial Black Hole Mass Spectrum in Brans-Dicke Theory
We investigate the evolution of primordial black hole mass spectrum by
including both accretion of radiation and Hawking evaporation within
Brans-Dicke cosmology in radiation, matter and vacuum-dominated eras. We also
consider the effect of evaporation of primordial black holes on the expansion
dynamics of the universe. The analytic solutions describing the energy density
of the black holes in equilibrium with radiation are presented. We demonstrate
that these solutions act as attractors for the system ensuring stability for
both linear and nonlinear situations. We show, however, that inclusion of
accretion of radiation delays the onset of this equilibrium in all radiation,
matter and vacuum-dominated eras.Comment: 18 pages, one figur
Occultation analysis of BATSE data: Operational aspects
The Burst and Transient Source Experiment (BATSE) large area detectors are being used to monitor hard x-ray/gamma ray sources on a daily basis for evidence of transient behavior. Flux measurements are performed using a simple earth occultation technique. Daily searches are also being performed to detect occultation steps of sources which are not being routinely monitored. Topics concerning the operational aspects of the occultation measurements are presented. Preliminary spectral results are also presented for several of the brighter sources
The Burst and Transient Source Experiment Earth Occultation Technique
An Earth orbiting detector sensitive to gamma ray photons will see step-like
occultation features in its counting rate when a gamma ray point source crosses
the Earth's limb. This is due to the change in atmospheric attenuation of the
gamma rays along the line of sight. In an uncollimated detector, these
occultation features can be used to locate and monitor astrophysical sources
provided their signals can be individually separated from the detector
background. We show that the Earth occultation technique applied to the Burst
and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory
(CGRO) is a viable and flexible all-sky monitor in the low energy gamma ray and
hard X-ray energy range (20 keV - 1 MeV). The method is an alternative to more
sophisticated photon imaging devices for astronomy, and can serve well as a
cost-effective science capability for monitoring the high energy sky.
Here we describe the Earth occultation technique for locating new sources and
for measuring source intensity and spectra without the use of complex
background models. Examples of transform imaging, step searches, spectra, and
light curves are presented. Systematic uncertainties due to source confusion,
detector response, and contamination from rapid background fluctuations are
discussed and analyzed for their effect on intensity measurements. A sky
location-dependent average systematic error is derived as a function of
galactic coordinates. The sensitivity of the technique is derived as a function
of incident photon energy and also as a function of angle between the source
and the normal to the detector entrance window. Occultations of the Crab Nebula
by the Moon are used to calibrate Earth occultation flux measurements
independent of possible atmospheric scattering effects.Comment: 39 pages, 24 figures. Accepted for publication in the Astrophysical
Journal Supplement
Recommended from our members
Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling.
Leiomyosarcoma (LMS) is a soft tissue tumor with a significant degree of morphologic and molecular heterogeneity. We used integrative molecular profiling to discover and characterize molecular subtypes of LMS. Gene expression profiling was performed on 51 LMS samples. Unsupervised clustering showed three reproducible LMS clusters. Array comparative genomic hybridization (aCGH) was performed on 20 LMS samples and showed that the molecular subtypes defined by gene expression showed distinct genomic changes. Tumors from the muscle-enriched cluster showed significantly increased copy number changes (P=0.04). A majority of the muscle-enriched cases showed loss at 16q24, which contains Fanconi anemia, complementation group A, known to have an important role in DNA repair, and loss at 1p36, which contains PRDM16, of which loss promotes muscle differentiation. Immunohistochemistry (IHC) was performed on LMS tissue microarrays (n=377) for five markers with high levels of messenger RNA in the muscle-enriched cluster (ACTG2, CASQ2, SLMAP, CFL2 and MYLK) and showed significantly correlated expression of the five proteins (all pairwise P<0.005). Expression of the five markers was associated with improved disease-specific survival in a multivariate Cox regression analysis (P<0.04). In this analysis that combined gene expression profiling, aCGH and IHC, we characterized distinct molecular LMS subtypes, provided insight into their pathogenesis, and identified prognostic biomarkers
Open Questions in Classical Gravity
We discuss some outstanding open questions regarding the validity and
uniqueness of the standard second order Newton-Einstein classical gravitational
theory. On the observational side we discuss the degree to which the realm of
validity of Newton's Law of Gravity can actually be extended to distances much
larger than the solar system distance scales on which the law was originally
established. On the theoretical side we identify some commonly accepted but
actually still open to question assumptions which go into the formulating of
the standard second order Einstein theory in the first place. In particular, we
show that while the familiar second order Poisson gravitational equation (and
accordingly its second order covariant Einstein generalization) may be
sufficient to yield Newton's Law of Gravity they are not in fact necessary. The
standard theory thus still awaits the identification of some principle which
would then make it necessary too. We show that current observational
information does not exclusively mandate the standard theory, and that the
conformal invariant fourth order theory of gravity considered recently by
Mannheim and Kazanas is also able to meet the constraints of data, and in fact
to do so without the need for any so far unobserved non-luminous or dark
matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send
requests to [email protected]). To appear in a special issue of
Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of
his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing
Company, N.Y., Fall 199
- …