292 research outputs found
Fault and magmatic interaction within Iceland's western rift over the last 9kyr
We present high-resolution 'Chirp' sub-bottom profiler data from Thingvallavatn, a lake in Iceland's western rift zone. These data are combined with stratigraphic constraints from sediment cores to show that movement on normal faults since 9 ka are temporally correlated with magmatic events, indicating that movements were controlled by episodic dyke intrusion. Sediment depo-centres and the focus of subsidence migrated westwards over 3-4 kyr towards the locus of subsequent brittle failure. We interpret this subsidence as related to dyke intrusion a few km along strike, originating from the Hengill volcanic system, which occurred prior to major dyking, faulting and subsidence within the lake at 1.9 ka
A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development.
EphB receptor tyrosine kinases control multiple steps in nervous system development. However, it remains unclear whether EphBs regulate these different developmental processes directly or indirectly. In addition, given that EphBs signal through multiple mechanisms, it has been challenging to define which signaling functions of EphBs regulate particular developmental events. To address these issues, we engineered triple knock-in mice in which the kinase activity of three neuronally expressed EphBs can be rapidly, reversibly and specifically blocked. We found that the tyrosine kinase activity of EphBs was required for axon guidance in vivo. In contrast, EphB-mediated synaptogenesis occurred normally when the kinase activity of EphBs was inhibited, suggesting that EphBs mediate synapse development by an EphB tyrosine kinase-independent mechanism. Taken together, our data indicate that EphBs control axon guidance and synaptogenesis by distinct mechanisms and provide a new mouse model for dissecting EphB function in development and disease
A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors
Objective: To explore the effect of visual field loss on the daily life of community-dwelling stroke survivors. Design: A qualitative interview study. Participants: Adult stroke survivors with visual field loss of at least six months’ duration. Methods: Semi-structured interviews were conducted with a non-purposive sample of 12 stroke survivors in their own homes. These were recorded, transcribed verbatim and analyzed with the framework method, using an inductive approach. Results: Two key analytical themes emerged. ‘Perception, experience and knowledge’ describes participant’s conflicted experience of having knowledge of their impaired vision but lacking perception of that visual field loss and operating under the assumption that they were viewing an intact visual scene when engaged in activities. Inability to recognize and deal with visual difficulties, and experiencing the consequences, contributed to their fear and loss of self-confidence. ‘Avoidance and adaptation’ were two typologies of participant response to visual field loss. Initially, all participants consciously avoided activities. Some later adapted to vision loss using self-directed head and eye scanning techniques. Conclusions: Visual field loss has a marked impact on stroke survivors. Stroke survivors lack perception of their visual loss in everyday life, resulting in fear and loss of confidence. Activity avoidance is a common response, but in some, it is replaced by self-initiated adaptive techniques
Stratigraphic Architecture of Bedrock Reference Section, Victoria Crater, Meridiani Planum, Mars
The Mars Exploration Rover Opportunity has investigated bedrock outcrops exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the role of surface processes in its geologic history. Opportunity has recently completed its observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ∼15 m high. The plains surrounding Victoria crater are ∼10 m higher in elevation than those surrounding the previously explored Endurance crater, indicating that the Victoria crater exposes a stratigraphically higher section than does the Endurance crater; however, Victoria strata overlap in elevation with the rocks exposed at the Erebus crater. Victoria crater has a well-developed geomorphic pattern of promontories and embayments that define the crater wall and that reveal thick bedsets (3–7 m) of large-scale cross-bedding, interpreted as fossil eolian dunes. Opportunity was able to drive into the crater at Duck Bay, located on the western margin of Victoria crater. Data from the Microscopic Imager and Panoramic Camera reveal details about the structures, textures, and depositional and diagenetic events that influenced the Victoria bedrock. A lithostratigraphic subdivision of bedrock units was enabled by the presence of a light-toned band that lines much of the upper rim of the crater. In ascending order, three stratigraphic units are named Lyell, Smith, and Steno; Smith is the light-toned band. In the Reference Section exposed along the ingress path at Duck Bay, Smith is interpreted to represent a zone of diagenetic recrystallization; however, its upper contact also coincides with a primary erosional surface. Elsewhere in the crater the diagenetic band crosscuts the physical stratigraphy. Correlation with strata present at nearby promontory Cape Verde indicates that there is an erosional surface at the base of the cliff face that corresponds to the erosional contact below Steno. The erosional contact at the base of Cape Verde lies at a lower elevation, but within the same plane as the contact below Steno, which indicates that the material above the erosional contact was built on significant depositional paleotopography. The eolian dune forms exposed in Duck Bay and Cape Verde, combined with the geometry of the erosional surface, indicate that these outcrops may be part of a larger-scale draa architecture. This insight is possible only as a result of the larger-scale exposures at Victoria crater, which significantly exceed the more limited exposures at the Erebus, Endurance, and Eagle craters
Minimum information and guidelines for reporting a Multiplexed Assay of Variant Effect
Multiplexed Assays of Variant Effect (MAVEs) have emerged as a powerful
approach for interrogating thousands of genetic variants in a single
experiment. The flexibility and widespread adoption of these techniques across
diverse disciplines has led to a heterogeneous mix of data formats and
descriptions, which complicates the downstream use of the resulting datasets.
To address these issues and promote reproducibility and reuse of MAVE data, we
define a set of minimum information standards for MAVE data and metadata and
outline a controlled vocabulary aligned with established biomedical ontologies
for describing these experimental designs
Recommended from our members
A Chemical Genetic Approach Reveals Distinct Mechanisms of EphB Signaling During Brain Development
EphB receptor tyrosine kinases control multiple steps in nervous system development. However, it remains unclear whether EphBs regulate these different developmental processes directly or indirectly. In addition, as EphBs signal through multiple mechanisms, it has been challenging to define which signaling functions of EphBs regulate particular developmental events. To address these issues, we engineered triple knockin mice in which the kinase activity of three neuronally expressed EphBs can be rapidly, reversibly, and specifically blocked. Using these mice we demonstrate that the tyrosine kinase activity of EphBs is required for axon guidance in vivo. By contrast, EphB-mediated synaptogenesis occurs normally when the kinase activity of EphBs is inhibited suggesting that EphBs mediate synapse development by an EphB tyrosine kinase-independent mechanism. Taken together, these experiments reveal that EphBs control axon guidance and synaptogenesis by distinct mechanisms, and provide a new mouse model for dissecting EphB function in development and disease
Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots
We adopt an atomistic pseudopotential description of the electronic structure
of self-assembled, lens shaped InAs quantum dots within the ``linear
combination of bulk bands'' method. We present a detailed comparison with
experiment, including quantites such as the single particle electron and hole
energy level spacings, the excitonic band gap, the electron-electron, hole-hole
and electron hole Coulomb energies and the optical polarization anisotropy. We
find a generally good agreement, which is improved even further for a dot
composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
Genomics 2 Proteins portal: a resource and discovery tool for linking genetic screening outputs to protein sequences and structures
peer reviewedRecent advances in AI-based methods have revolutionized the field of structural biology. Concomitantly, high-throughput sequencing and functional genomics have generated genetic variants at an unprecedented scale. However, efficient tools and resources are needed to link disparate data types—to ‘map’ variants onto protein structures, to better understand how the variation causes disease, and thereby design therapeutics. Here we present the Genomics 2 Proteins portal (https://g2p.broadinstitute.org/): a human proteome-wide resource that maps 20,076,998 genetic variants onto 42,413 protein sequences and 77,923 structures, with a comprehensive set of structural and functional features. Additionally, the Genomics 2 Proteins portal allows users to interactively upload protein residue-wise annotations (for example, variants and scores) as well as the protein structure beyond databases to establish the connection between genomics to proteins. The portal serves as an easy-to-use discovery tool for researchers and scientists to hypothesize the structure–function relationship between natural or synthetic variations and their molecular phenotypes.9. Industry, innovation and infrastructur
Determinants of participation in a web-based health risk assessment and consequences for health promotion programs
Background: The health risk assessment (HRA) is a type of health promotion program frequently offered at the workplace. Insight into the underlying determinants of participation is needed to evaluate and implement these interventions. Objective: To analyze whether individual characteristics including demographics, health behavior, self-rated health, and work-related factors are associated with participation and nonparticipation in a Web-based HRA. Methods: Determinants of participation and nonparticipation were investigated in a cross-sectional study among individuals employed at five Dutch organizations. Multivariate logistic regression was performed to identify determinants of participation and nonparticipation in the HRA after controlling for organization and all other variables. Results: Of the 8431 employees who were invited, 31.9% (2686/8431) enrolled in the HRA. The online questionnaire was completed by 27.2% (1564/5745) of the nonparticipants. Determinants of participation were some periods of stress at home or work in the preceding year (OR 1.62, 95% CI 1.08-2.42), a decreasing number of weekdays on which at least 30 minutes were spent on moderate to vigorous physical activity (ORdayPA0.84, 95% CI 0.79-0.90), and increasing alcohol consumption. Determinants of nonparticipation were less-than-positive self-rated health (poor/very poor vs very good, OR 0.25, 95% CI 0.08-0.81) and tobacco use (at least weekly vs none, OR 0.65, 95% CI 0.46-0.90). Conclusions: This study showed that with regard to isolated health behaviors (insufficient physical activity, excess alcohol consumption, and stress), those who could benefit most from the HRA were more likely to participate. However, tobacco users and those who rate
Word add-in for ontology recognition: semantic enrichment of scientific literature
<p>Abstract</p> <p>Background</p> <p>In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles.</p> <p>Results</p> <p>The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at <url>http://www.codeplex.com/UCSDBioLit</url>.</p> <p>Conclusions</p> <p>The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata.</p
- …