105 research outputs found

    Complement in Metastasis: A Comp in the Camp

    Get PDF
    The complement system represents a pillar of the innate immune response. This system, critical for host defense against pathogens, encompasses more than 50 soluble, and membrane-bound proteins. Emerging evidence underscores its clinical relevance in tumor progression and its role in metastasis, one of the hallmarks of cancer. The multistep process of metastasis entails the acquisition of advantageous functions required for the formation of secondary tumors. Thus, targeting components of the complement system could impact not only on tumor initiation but also on several crucial steps along tumor dissemination. This novel vulnerability could be concomitantly exploited with current strategies overcoming tumor-mediated immunosuppression to provide a substantial clinical benefit in the treatment of metastatic disease. In this review, we offer a tour d'horizon on recent advances in this area and their prospective potential for cancer treatment

    Complementing the Cancer-Immunity Cycle

    Get PDF
    Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors

    The role of adrenomedullin as a growth regulatory peptide in the normal and malignant setting

    Get PDF
    Adrenomedullin (AM ) is a recently discovered pluripo1ent peptide initially isolated fraro a human adrenal gland tumor (pheochromocytoma). Adrenomedullin has been shown to have an ancient origin with immunoreactive species fOWld in maromals, birds, reptiles, amphibians, fish , and eemnoderms (s t a r fish ). Given its highly conserved evolutionary expression, AM is thought te playa critica! !•ole in spedes survival. This peptide has been show lo mediate a variety of physiological fu netlons, of which iis involvement in growth r egulation wil1 be tbe central focus of this papero In the following text, we will review the cited Iiterature in this area and inelude our own observations regarding AM express10n in carcinogenesis, embryogenesis, and wound r epair. Adrenomedullin will be shown to induce both growth promotian or growth suppression depending on the taTget cell examined aud the sUITounding nutritional environment in which the analysis was done. Its implied role as a mitogen, aogiogenic fador, and apoplosis survival factor will be critiqued and evaluated relative to its impor tance in the cel! proHferation process. Finally, we will review the a ntimicrobiaJ effect AM has on severa1 human pathogens ( Es•cherichia coli and Candidn albi.cans) and demonstrate its partieipation in the host immune response syslem as a first line defense peptide

    Complement activation mediates cetuximab inhibition of non-small cell lung cancer tumor growth in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cetuximab, an antibody targeting the epidermal growth factor receptor (EGFR), increases survival in patients with advanced EGFR-positive non-small cell lung cancer when administrated in combination with chemotherapy. In this study, we investigated the role of complement activation in the antitumor mechanism of this therapeutic drug.</p> <p>Results</p> <p>EGFR-expressing lung cancer cell lines were able to bind cetuximab and initiate complement activation by the classical pathway, irrespective of the mutational status of EGFR. This activation led to deposition of complement components and increase in complement-mediated cell death. The influence of complement activation on the activity of cetuximab <it>in vivo </it>was evaluated in xenografts of A549 lung cancer cells on nude mice. A549 cells express wild-type EGFR and have a KRAS mutation. Cetuximab activity against A549 xenografts was highly dependent on complement activation, since complement depletion completely abrogated the antitumor efficacy of cetuximab. Moreover, cetuximab activity was significantly higher on A549 cells in which a complement inhibitor, factor H, was genetically downregulated.</p> <p>Conclusions</p> <p>We demonstrate for the first time that the <it>in vivo </it>antitumor activity of cetuximab can be associated with a complement-mediated immune response. These results may have important implications for the development of new cetuximab-based therapeutic strategies and for the identification of markers that predict clinical response.</p

    Contrasting responses of non-small cell lung cancer to antiangiogenic therapies depend on histological subtype

    Get PDF
    The vascular endothelial growth factor (VEGF) pathway is a clinically validated antiangiogenic target for non-small cell lung cancer (NSCLC). However, some contradictory results have been reported on the biological effects of antiangiogenic drugs. In order to evaluate the efficacy of these drugs in NSCLC histological subtypes, we analyzed the anticancer effect of two anti-VEGFR2 therapies (sunitinib and DC101) in chemically induced mouse models and tumorgrafts of lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Antiangiogenic treatments induced vascular trimming in both histological subtypes. In ADC tumors, vascular trimming was accompanied by tumor stabilization. In contrast, in SCC tumors, antiangiogenic therapy was associated with disease progression and induction of tumor proliferation. Moreover, in SCC, anti-VEGFR2 therapies increased the expression of stem cell markers such as aldehyde dehydrogenase 1A1, CD133, and CD15, independently of intratumoral hypoxia. In vitro studies with ADC cell lines revealed that antiangiogenic treatments reduced pAKT and pERK signaling and inhibited proliferation, while in SCC-derived cell lines the same treatments increased pAKT and pERK, and induced survival. In conclusion, this study evaluates for the first time the effect of antiangiogenic drugs in lung SCC murine models in vivo and sheds light on the contradictory results of antiangiogenic therapies in NSCLC

    VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different isoforms of VEGF-A (mainly VEGF<sub>121</sub>, VEGF<sub>165 </sub>and VEGF<sub>189</sub>) have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGF<sub>xxx</sub>b, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF<sub>121/165</sub>b proteins in the yeast <it>Pichia pastoris </it>and constructed vectors to overexpress these isoforms and assess their angiogenic potential.</p> <p>Results</p> <p>Recombinant VEGF<sub>121/165</sub>b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF<sub>165</sub>. Furthermore, treatment of endothelial cells with VEGF<sub>121/165</sub>b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF<sub>165</sub>. Moreover, <it>in vivo </it>angiogenesis assays confirmed angiogenesis stimulation by VEGF<sub>121/165</sub>b isoforms. A549 and PC-3 cells overexpressing VEGF<sub>121</sub>b or VEGF<sub>165</sub>b (or carrying the PCDNA3.1 empty vector, as control) and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGF<sub>xxx</sub>b isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p < 0.05) in both VEGF<sub>xxx</sub>b and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033) between VEGF<sub>xxx</sub>b and total VEGF-A was found.</p> <p>Conclusions</p> <p>Our results demonstrate that VEGF<sub>121/165</sub>b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGF<sub>xxx</sub>b isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken into account when considering a possible use of VEGF<sub>121/165</sub>b-based therapies in patients.</p

    A Gene-alteration Profile of Human Lung Cancer Cell Lines

    Get PDF
    Aberrant proteins encoded from genes altered in tumors drive cancer development and may also be therapeutic targets. Here we derived a comprehensive gene-alteration profile of lung cancer cell lines. We tested 17 genes in a panel of 88 lung cancer cell lines and found the rates of alteration to be higher than previously thought. Nearly all cells feature inactivation at TP53 and CDKN2A or RB1, whereas BRAF, MET, ERBB2, and NRAS alterations were infrequent. A preferential accumulation of alterations an-tong histopathological types and a mutually exclusive occurrence of alterations of CDKN2A and RB1 as well as of KRAS, epidermal growth factor receptor (EGFR), NRAS, and ERBB2 were seen. Moreover, in non-small-cell lung cancer (NSCLC), concomitant activation of signal transduction pathways known to converge in mammalian target of rapamycin (mTOR) was common. Cells with single activation of ERBB2, PTEN, or MET signaling showed greater sensitivity to cell growth inhibition induced by erlotinib, LY294002, and PHA665752, respectively, than did cells featuring simultaneous activation of these pathways, underlining the need for combined therapeutic strategies in targeted cancer treatments. In conclusion, our gene,alteration landscape of lung cancer cell lines provides insights into how gene alterations accumulate and biological pathways interact in cancer. Hum Mutat 30, 1199-1206, 2009. (C) 2009 Wiley-Liss, Inc

    Expression of Sirtuin 1 and 2 Is Associated with Poor Prognosis in Non-Small Cell Lung Cancer Patients

    Get PDF
    Sirtuin 1 (SIRT1) and sirtuin 2 (SIRT2) are NAD+-dependent protein deacetylases involved in the regulation of key cancer-associated genes. In this study we evaluated the relevance of these deacetylases in lung cancer biology

    Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway

    Get PDF
    The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers and genetic alterations. We analyzed markers of DNA damage response (DDR), proliferative stress, and telomeric stress: gamma-H2AX, p16, p53, and TERT. Lung cancer-related epigenetic and genetic alterations, including promoter hypermethylation status of p16(CDKN2A), APC, CDH13, Rassf1, and Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, and c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase and p53 induction. p16 was also induced in early tumorigenic progression and was inactivated in bronchiolar dysplasias and tumors. Remarkably, lack of mutations of Ras and epidermal growth factor receptor, and a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A), CDH13, and APC, but not in Rassf1 and Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer

    Identification of Importin 8 (IPO8) as the most accurate reference gene for the clinicopathological analysis of lung specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The accurate normalization of differentially expressed genes in lung cancer is essential for the identification of novel therapeutic targets and biomarkers by real time RT-PCR and microarrays. Although classical "housekeeping" genes, such as GAPDH, HPRT1, and beta-actin have been widely used in the past, their accuracy as reference genes for lung tissues has not been proven.</p> <p>Results</p> <p>We have conducted a thorough analysis of a panel of 16 candidate reference genes for lung specimens and lung cell lines. Gene expression was measured by quantitative real time RT-PCR and expression stability was analyzed with the softwares <it>GeNorm </it>and <it>NormFinder</it>, mean of |ΔCt| (= |Ct Normal-Ct tumor|) ± SEM, and correlation coefficients among genes. Systematic comparison between candidates led us to the identification of a subset of suitable reference genes for clinical samples: IPO8, ACTB, POLR2A, 18S, and PPIA. Further analysis showed that IPO8 had a very low mean of |ΔCt| (0.70 ± 0.09), with no statistically significant differences between normal and malignant samples and with excellent expression stability.</p> <p>Conclusion</p> <p>Our data show that IPO8 is the most accurate reference gene for clinical lung specimens. In addition, we demonstrate that the commonly used genes GAPDH and HPRT1 are inappropriate to normalize data derived from lung biopsies, although they are suitable as reference genes for lung cell lines. We thus propose IPO8 as a novel reference gene for lung cancer samples.</p
    corecore