8 research outputs found

    Chemistry and Hypoglycemic Activity of GPR119 Agonist ZB-16

    Get PDF
    This article is to highlight the chemical properties and primary pharmacology of novel GPR119 agonist ZB-16 and its analogs, which were rejected during the screening. Experiments were performed in vitro (specific activity, metabolism and cell toxicity) and in vivo (hypoglycemic activity and pharmacokinetics). ZB-16 exhibits nanomolar activity (EC50 = 7.3–9.7 nM) on target receptor GPR119 in vitro associated with hypoglycemic activity in vivo. In animals with streptozotocin-nicotinamide induced type 2 diabetes mellitus (STZ-NA T2D) daily oral dose of ZB-16 (1 mg/kg) or sitagliptin (10 mg/kg) for 28 days resulted in the reduction of blood glucose levels. The effects of ZB-16 were comparable to the hypoglycemic action of sitagliptin. ZB-16 demonstrated relatively low plasma exposition, high distribution volume, mild clearance and a prolonged half-life (more than 12 h). The present study demonstrates that the targeted search for selective GPR119 receptor agonists is a well-founded approach for developing novel drugs for the therapy of T2D. Based on the combination of high in vitro activity (compared to competitor standards), a useful ADME profile, distinct hypoglycemic activity which is comparable to the efficacy of sitagliptin in rats with experimental T2D, and the acceptable pharmacokinetic profile, we recommend the ZB-16 compound for further research

    The Efficacy of Aprotinin Combinations with Selected Antiviral Drugs in Mouse Models of Influenza Pneumonia and Coronavirus Infection Caused by SARS-CoV-2

    No full text
    The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment

    Nuclear Oncoprotein Prothymosin α Is a Partner of Keap1: Implications for Expression of Oxidative Stress-Protecting Genes

    Get PDF
    Animal cells counteract oxidative stress and electrophilic attack through coordinated expression of a set of detoxifying and antioxidant enzyme genes mediated by transcription factor Nrf2. In unstressed cells, Nrf2 appears to be sequestered in the cytoplasm via association with an inhibitor protein, Keap1. Here, by using the yeast two-hybrid screen, human Keap1 has been identified as a partner of the nuclear protein prothymosin α. The in vivo and in vitro data indicated that the prothymosin α-Keap1 interaction is direct, highly specific, and functionally relevant. Furthermore, we showed that Keap1 is a nuclear-cytoplasmic shuttling protein equipped with a nuclear export signal that is important for its inhibitory action. Prothymosin α was able to liberate Nrf2 from the Nrf2-Keap1 inhibitory complex in vitro through competition with Nrf2 for binding to the same domain of Keap1. In vivo, the level of Nrf2-dependent transcription was correlated with the intracellular level of prothymosin α by using prothymosin α overproduction and mRNA interference approaches. Our data attribute to prothymosin α the role of intranuclear dissociator of the Nrf2-Keap1 complex, thus revealing a novel function for prothymosin α and adding a new dimension to the molecular mechanisms underlying expression of oxidative stress-protecting genes

    Effect of Aprotinin and Avifavir<sup>®</sup> Combination Therapy for Moderate COVID-19 Patients

    No full text
    COVID-19 is a contagious multisystem inflammatory disease caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We studied the efficacy of Aprotinin (nonspecific serine proteases inhibitor) in combination with Avifavir® or Hydroxychloroquine (HCQ) drugs, which are recommended by the Russian Ministry of Health for the treatment therapy of moderate COVID-19 patients. This prospective single-center study included participants with moderate COVID-19-related pneumonia, laboratory-confirmed SARS-CoV-2, and admitted to the hospitals. Patients received combinations of intravenous (IV) Aprotinin (1,000,000 KIU daily, 3 days) and HCQ (cohort 1), inhalation (inh) treatment with Aprotinin (625 KIU four times per day, 5 days) and HCQ (cohort 2) or IV Aprotinin (1,000,000 KIU daily for 5 days) and Avifavir (cohort 3). In cohorts 1–3, the combination therapy showed 100% efficacy in preventing the transfer of patients (n = 30) to the intensive care unit (ICU). The effect of the combination therapy in cohort 3 was the most prominent, and the median time to SARS-CoV-2 elimination was 3.5 days (IQR 3.0–4.0), normalization of the CRP concentration was 3.5 days (IQR 3–5), of the D-dimer concentration was 5 days (IQR 4 to 5); body temperature was 1 day (IQR 1–3), improvement in clinical status or discharge from the hospital was 5 days (IQR 5–5), and improvement in lung lesions of patients on 14 day was 100%

    Discovery of Novel Highly Potent Hepatitis C Virus NS5A Inhibitor (AV4025)

    No full text
    A series of next in class small-molecule hepatitis C virus (HCV) NS5A inhibitors with picomolar potency containing 2-pyrrolidin-2-yl-5-{4-[4-(2-pyrrolidin-2-yl-1<i>H</i>-imidazol-5-yl)­buta-1,3-diynyl]­phenyl}-1<i>H</i>-imidazole cores was designed based on the SAR studies available for the reported NS5A inhibitors. Compound <b>13a</b> (AV4025), with (<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>)-stereochemistry (EC<sub>50</sub> = 3.4 ± 0.2 pM, HCV replicon genotype 1b), was dramatically more active than were the compounds with two (<i>S</i>)- and two (<i>R</i>)-chiral centers. Human serum did not significantly reduce the antiviral activity (<4-fold). Relatively favorable pharmacokinetic features and good oral bioavailability were observed during animal studies. Compound <b>13a</b> was well tolerated in rodents (in mice, LD<sub>50</sub> = 2326 mg/kg or higher), providing a relatively high therapeutic index. During safety, pharmacology and subchronic toxicity studies in rats and dogs, it was not associated with any significant pathological or clinical findings. This compound is currently being evaluated in phase I/II clinical trials for the treatment of HCV infection
    corecore