18 research outputs found

    Comparison of metaheuristic strategies for peakbin selection in proteomic mass spectrometry data

    Get PDF
    Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For this purpose, the detection of relevant peakbins in MS data is currently under intense research. Data from mass spectrometry are challenging to analyze because of their high dimensionality and the generally low number of samples available. To tackle this problem, the scientific community is becoming increasingly interested in applying feature subset selection techniques based on specialized machine learning algorithms. In this paper, we present a performance comparison of some metaheuristics: best first (BF), genetic algorithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all the algorithms, except for GA, have been first applied to detect relevant peakbins in MS data. All these metaheuristic searches are embedded in two different filter and wrapper schemes coupled with Naive Bayes and SVM classifiers

    Genetic algorithms and Gaussian Bayesian networks to uncover the predictive core set of bibliometric indices

    Get PDF
    The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q2-index, and hr-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area

    Microarray analysis of autoimmune diseases by machine learning procedures

    Get PDF
    —Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity

    Differential Micro RNA Expression in PBMC from Multiple Sclerosis Patients

    Get PDF
    Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse stage. We have analyzed the expression patterns of 364 miRNAs in PBMC obtained from multiple sclerosis patients in relapse status, in remission status and healthy controls. The expression patterns of the miRNAs with significantly different expression were validated in an independent set of samples. In order to determine the effect of the miRNAs, the expression of some predicted target genes of these were studied by qPCR. Gene interaction networks were constructed in order to obtain a co-expression and multivariate view of the experimental data. The data analysis and later validation reveal that two miRNAs (hsa-miR-18b and hsa-miR-599) may be relevant at the time of relapse and that another miRNA (hsa-miR-96) may be involved in remission. The genes targeted by hsa-miR-96 are involved in immunological pathways as Interleukin signaling and in other pathways as wnt signaling. This work highlights the importance of miRNA expression in the molecular mechanisms implicated in the disease. Moreover, the proposed involvement of these small molecules in multiple sclerosis opens up a new therapeutic approach to explore and highlight some candidate biomarker targets in MS

    Discretization of expression quantitative trait loci in association analysis between genotypes and expression data

    Get PDF
    Expression quantitative trait loci are used as a tool to identify genetic causes of natural variation in gene expression. Only in a few cases the expression of a gene is controlled by a variant on a single genetic marker. There is a plethora of different complexity levels of interaction effects within markers, within genes and between marker and genes. This complexity challenges biostatisticians and bioinformatitians every day and makes findings difficult to appear. As a way to simplify analysis and better control confounders, we tried a new approach for association analysis between genotypes and expression data. We pursued to understand whether discretization of expression data can be useful in genome-transcriptome association analyses. By discretizing the dependent variable, algorithms for learning classifiers from data as well as performing block selection were used to help understanding the relationship between the expression of a gene and genetic markers. We present the results of using this approach to detect new possible causes of expression variation of DRB5, a gene playing an important role within the immune system. Together with expression of gene DRB5 obtained from the classical microarray technology, we have also measured DRB5 expression by using the more recent next-generation sequencing technology. A supplementary website including a link to the software with the method implemented can be found at http: //bios.ugr.es/DRB5

    What is behind a summary-evaluation decision?

    Get PDF
    Research in psychology has reported that, among the variety of possibilities for assessment methodologies, summary evaluation offers a particularly adequate context for inferring text comprehension and topic understanding. However, grades obtained in this methodology are hard to quantify objectively. Therefore, we carried out an empirical study to analyze the decisions underlying human summary-grading behavior. The task consisted of expert evaluation of summaries produced in critically relevant contexts of summarization development, and the resulting data were modeled by means of Bayesian networks using an application called Elvira, which allows for graphically observing the predictive power (if any) of the resultant variables. Thus, in this article, we analyzed summary-evaluation decision making in a computational framewor

    Network measures for information extraction in evolutionary algorithms

    Full text link
    Problem domain information extraction is a critical issue in many real-world optimization problems. Increasing the repertoire of techniques available in evolutionary algorithms with this purpose is fundamental for extending the applicability of these algorithms. In this paper we introduce a unifying information mining approach for evolutionary algorithms. Our proposal is based on a division of the stages where structural modelling of the variables interactions is applied. Particular topological characteristics induced from different stages of the modelling process are identified. Network theory is used to harvest problem structural information from the learned probabilistic graphical models (PGMs). We show how different statistical measures, previously studied for networks from different domains, can be applied to mine the graphical component of PGMs. We provide evidence that the computed measures can be employed for studying problemdifficulty, classifying different probleminstances and predicting the algorithmbehavior

    Restating clinical impression of severity index for Parkinson's disease using just non-motor criteria

    Full text link
    Clinical impression of severity index (CISI) for Parkinson's disease (PD) is an index to assess PD severity based on four clinical domains. Since this is a continuous value, a categorization policy is proposed by solving an optimization problem. Using this encoding, different comparisons between CISI and other non-motor indexes or items are addressed using wrapper item subset selection and estimation of distribution algorithms. Results show how some of the non-motor items are very relevant, achieving good classification performances when used to predict the CISI severity index

    Unveiling relevant non-motor Parkinson’s disease severity symptoms using a machine learning approach

    Full text link
    Objective: Is it possible to predict the severity staging of a Parkinson’s disease (PD) patient using scores of non-motor symptoms? This is the kickoff question for a machine learning approach to classify two widely known PD severity indexes using individual tests from a broad set of non-motor PD clinical scales only. Methods: The Hoehn & Yahr index and clinical impression of severity index are global measures of PD severity. They constitute the labels to be assigned in two supervised classification problems using only non-motor symptom tests as predictor variables. Such predictors come from a wide range of PD symptoms, such as cognitive impairment, psychiatric complications, autonomic dysfunction or sleep disturbance. The classification was coupled with a feature subset selection task using an advanced evolutionary algorithm, namely an estimation of distribution algorithm. Results: Results show how five different classification paradigms using a wrapper feature selection scheme are capable of predicting each of the class variables with estimated accuracy in the range of 72–92%. In addition, classification into the main three severity categories (mild, moderate and severe) was split into dichotomic problems where binary classifiers perform better and select different subsets of non-motor symptoms. The number of jointly selected symptoms throughout the whole process was low, suggesting a link between the selected non-motor symptoms and the general severity of the disease. Conclusion: Quantitative results are discussed from a medical point of view, reflecting a clear translation to the clinical manifestations of PD. Moreover, results include a brief panel of non-motor symptoms that could help clinical practitioners to identify patients who are at different stages of the disease from a limited set of symptoms, such as hallucinations, fainting, inability to control body sphincters or believing in unlikely facts
    corecore