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Research in psychology has reported that, among the variety of possibilities for assessment methodologies, 
summary evaluation offers a particularly adequate context for inferring text comprehension and topic under­
standing. However, grades obtained in this methodology are hard to quantify objectively. Therefore, we carried 
out an empirical study to analyze the decisions underlying human summary-grading behavior. The task consisted 
of expert evaluation of summaries produced in critically relevant contexts of summarization development, and 
the resulting data were modeled by means of Bayesian networks using an application called Elvira, which al­
lows for graphically observing the predictive power (if any) of the resultant variables. Thus, in this article, we 
analyzed summary-evaluation decision making in a computational framework. 

Among the different educational assessment method­
ologies, giving learners an open-ended writing task offers 
them the freedom to write anything they know, as well 
as the implicit responsibility to construct their own re­
sponses. However, data obtained when grading such texts 
are hard to quantify with precision, and such evaluation 
is therefore considered more subjective than evalua­
tion via other methodologies. But, is there any common 
ground for human summary-evaluation decision making? 
What should we take into consideration to model human 
summary-evaluation decisions? 

Experts in text-grading practice report a need for focus­
ing on the identification and implementation of features 
of effective performance-based assessment and standards 
when trying to understand the impact of scoring (Goldberg 
& Roswell, 1999). In addition, according to Chung and 
Baker's (2003) study of automatic grading, there is a need 
to produce evidence that the scores produced through this 
system faithfully reflect the intended use of those scores. 
A method to do this is to base the dimensions of scoring 
rubrics on the performance of experts who possess the 
desired knowledge, not only in terms of content, but also 
in terms of cognition. 

Most research into automatic grading is very much 
focused on obtaining single measures for text coverage, 
cohesion, coherence, and so forth. But, in addition to this 
identification of discourse parameters, a decision-making 
step has also been found to be necessary in conventional 
grading (Genesee & Upshur, 1996). 

In this article, we specifically analyze what is involved 
during the decision-making process in summary grading. 
Our aim is to further define a performance-based model 
of the considerations taken by expert human graders when 
determining a global summary score. Evaluation deci­
sions are modeled by means of a type of Bayesian network 

(Pearl, 1988) that has already been shown to be capable 
of explaining psychological phenomena (Glymour, 2001). 
Further work utilizing Bayesian classifiers to deal with 
text grading can be found in Burstein and Marcu (2003). 
The Bayesian approach allows for observing relations 
among the summary-evaluation variables and can account 
for human uncertainty. As a result, it allows for the classi­
fication process to go on, even when some of the variables 
are not present. This model has been observed and studied 
with the aid of a graphical application called Elvira (El­
vira Consortium, 2002). 

The article is organized as follows. In Section 1, we sur­
vey some previous work on summarization and summary 
assessment. Section 2 is devoted to a theoretical analysis 
of Bayesian networks. In Section 3, we draw conclusions 
from interviews with experts. Section 4 contains human 
summary-assessment performance data. Finally, in Sec­
tion 5, we present the conclusions from our research and 
an analysis of possibilities for future work. 

1. SUMMARY EVALUATION 

Little work has been done on summary evaluation as 
such, but summarization has already been widely studied. 

Human summarization is a learning strategy that is 
commonly used to measure text comprehension in educa­
tional practice. It involves a variety of different abilities: 
understanding, abstraction, organization, and the repro­
duction of information. Summaries can be either spoken 
or written, and summary maturity varies with age, abstrac­
tion ability, language ability, and learning ability, among 
other factors. Summarization takes place in a variety of 
forms, such as headlines, outlines, minutes, previews, di­
gests, biographies, abridgments, bulletins, histories, and 
so on (Mani & Maybury, 1999). 



A successful learning strategy helps with content com­
prehension. The information contained in a summary gives 
a broad idea of what has been understood by learners— 
that is, what has been retrieved from a text and what has 
not (Garner, 1982). Because of this, summarization is one 
of the most popular methods to evaluate text comprehen­
sion and content understanding. 

Much has been written about what a good summary 
should and should not contain. However, human sum-
marizers do not always produce what would be expected 
from a prototypical summary. Many authors have studied 
maturity as a factor to describe the similarities and dif­
ferences among summarizers. Acquisition of the ability 
to summarize is part of the more general acquisition of 
writing ability. Therefore, it shares common features with 
other types of expression, such as essay writing. 

Thus far, a great amount of work has been done on text 
structure, summarization, and text comprehension mod­
eling. Bartlett (1932) was one of the first psychologists 
to analyze text retrieval and the processes that underlie 
the quality of the information retrieved. Rumelhart (1975) 
produced one of the first models to explain narrative sum­
marization procedure. Thorndyke (1977) explored text re­
trieval on the basis of text plot complexity. Kintsch and 
van Dijk (1978) proposed a holistic model for text repre­
sentation and structure; this model describes the mental 
representation of summaries and the major difficulties 
on the way toward mature summarization. Schank, Leb-
owitz, and Birnbaum (1980) took a different approach, 
producing a parser able to search for the most relevant 
information in text, according to the premise that some in­
formation is more relevant than other information. Finally, 
Lehnert (1981) produced a model that explains narrative 
summarization by taking into account emotional and af­
fective variables. 

In addition, plenty of empirical studies have tested and 
widened the conclusions from these models. For instance, 
Garner (1982, 1987) studied differences in maturity. Ac­
cording to her data, highly efficient summarizers not only 
summarized more efficiently, but also stored information 
in memory more efficiently. She argued that effective 
summarization implies effective memorization. Similarly, 
Brown and Day (1983) tested some conclusions provided 
by Kintsch and van Dijk's (1978) model and confirmed 
that young learners have difficulties with critical read­
ing and effective studying. Later, Manelis and Yekovich 
(1984) analyzed expository text in relation to comprehen­
sion and learning processes, using key concepts to detect 
learning. Moreover, Sherrard (1989) provided an overall 
view of summarization by combining analyses of sum-
marizer strategies and performance improvement with as­
sessments of summary quality. Finally, Bransford, Vye, 
Kinzer, and Risko (1990) explained what students learn 
from text and how they are guided through the learning 
process itself. 

The key issue on which research work has concen­
trated, however, is the difference between a poor and a 
good summary. Many researchers in this area have made a 
clear distinction between immature and mature summariz­

ers. Yet how do we identify a mature versus an immature 
summary? When evaluating summaries, a major focus 
has been placed on use of a topic sentence and main-idea 
identification, and the right use of those skills has been 
taken as indicative of mature summarization (Manelis & 
Yekovich, 1984). Topic sentences are normally placed at 
the beginning of the text, although there is no fixed crite­
rion in this respect. Elosúa, García-Madruga, Gutiérrez, 
Luque, and Gárate (2002) reported that students in sec­
ondary education tend to identify the main idea more 
easily when it appears at the beginning of the text. Those 
authors argued that the reason behind this pattern is that 
many readers expect to find the main idea in the first para­
graphs of the text. 

In a similar way, Garner (1982) argued that highly 
efficient summarizers recognize true information that 
does not appear in the source text a higher proportion of 
the time than do less efficient summarizers. Therefore, 
immature summarizers' difficulties are mainly related 
to comprehension and remembering. For instance, such 
summarizers have great difficulties differentiating super-
ordinate from subordinate information (Taylor, 1982). 
Another tendency observed in poor summarizers is the 
knowledge-telling strategy (Brown & Day, 1983), which 
involves writing everything they know or remember about 
a reading text, resulting in a huge amount of irrelevant in­
formation and lack of abstraction. In conclusion, it seems 
clear that some signs of a poor summary are large amounts 
of irrelevant information, copying parts of the text, and 
comprehension failures. Consequently, a good summary 
should not show such performance markers. 

Language proficiency can also make the difference be­
tween a mature and an immature summary. For instance, 
second language (L2) summarizers are faced with com­
prehension failures and lack of grammar and lexicon 
knowledge that they would not necessarily experience in 
their first language. Although the final result of their ef­
forts might look similar to that of a monolingual but im­
mature summarizer, the reasons behind the problems have 
been shown to be different (Kozminsky & Graetz, 1986; 
Long & Harding-Esch, 1978). Therefore, specific train­
ing and evaluation appear to be necessary. Overall, L2 
learners' summaries can suffer from a number of deficits: 
information less well selected for relevance, less efficient 
language processing, and poorer use of language in sum­
marization and recall. 

Prior knowledge has also been found to be a factor 
related to producing a successful summary; it is related 
to category selection, facilitates information extrac­
tion, and reduces working memory demands (Symons 
& Pressley, 1993). Therefore, previous familiarity with 
content can determine text comprehension and main-
idea identification. This is why teachers pay special at­
tention when selecting reading texts, trying to find those 
that better match their students' backgrounds. This idea 
applies not only to content knowledge, but also to lan­
guage proficiency. 

Sherrard (1989) focused attention on text comprehen­
sion, arguing that expert summarizers make decisions 



on the basis of the whole text, whereas poor readers 
and youngsters mainly look at sentences and details. 
She concluded that a mature summary should include 
three principal components: content, structure, and style 
features. 

The absence or presence of a reading text is another rel­
evant feature to bear in mind when evaluating summaries. 
It has been argued that, whereas text-present summari­
zation encourages shallow processing in memory, text-
absent summarization leads to deep processing (Kirby & 
Pedwell, 1991). Depending on the learning goals, one or 
the other of these methods might be chosen. Kirby and 
Pedwell stated that deep learners might prefer the text-
absent mode, whereas surface learners should learn more 
with text-present summarization. Other issues to take into 
consideration when planning instruction are text readabil­
ity and learners' approaches to learning. Consequently, 
the use of a text-present approach is recommended for 
unskilled learners. 

What does human summary evaluation involve, 
though? This task involves the ability to produce an 
adequate mental summary, on one hand, and the abil­
ity to detect summarizers' success and difficulties, on 
the other. Hence, the task of summary evaluation should 
be assigned to a person who has mastered the ability to 
summarize and is able to evaluate all of its components: 
the summarization expert. 

Little work has been done on summary assessment as 
such. Thus far, however, Sherrard (1989) reported poor 
interrater agreement on summary evaluation. The pres­
ent study takes a Bayesian-network-based approach in 
order to observe the predictive power of the resultant 
variables. 

2. BAYESIAN NETWORKS 

The obtained summary-evaluation decisions are mod­
eled by means of a type of Bayesian network (Pearl, 1988) 
that has already been shown capable of explaining psy­
chological phenomena (Glymour, 2001). This approach 

allows for the observation of relations among variables 
and can account for uncertainty. It can deal with miss­
ing values, and the generalization ability of Bayesian 
networks is also less sensitive to overfitting. Therefore, 
a Bayesian approach tends to be stronger when analyz­
ing small samples. Moreover, using a graphical applica­
tion called Elvira (Elvira Consortium, 2002) allowed us 
to graphically observe and study the variable relations. 
From this approach, it was possible to perform the clas­
sification process, even when all of the variable values 
were not known. 

2.1. Introduction 
For those who are not familiar with Bayesian networks, 

the following section introduces this type of probabilis­
tic graphical model (Jensen, 2001; Neapolitan, 2003; 
Pearl, 1988). Such models have been used for the last 
decade for analysis in domains in which uncertainty is 
intrinsic. 

Probabilistic graphical models represent multivari­
ate joint probability distributions via a product of terms, 
each of which involves only a few variables. The struc­
ture of the product is represented by a graph that relates 
the variables that appear in a common term. This graph 
specifies the product form of the distribution and also 
provides tools for reasoning about the properties entailed 
by the product (Lauritzen & Spiegelhalter, 1988). For 
a sparse graph, the representations in these models are 
compact and in many cases allow for effective inference 
and learning. 

2.2. Bayesian Networks 
In Bayesian networks, the joint distribution over a set 

X = (Xh . . . , X„) of random variables is represented as a 
product of conditional probabilities. A Bayesian network 
associates with each variable X¡ a conditional probability 
distribution/^ = x¡ | Pa¡ = pa¿), where Pa¡ C Xis the set 
of variables that are called the parents of X¡. Intuitively, the 
values of the parents directly influence the choice of the 
values of X¡. Hence, the resulting product is of the form 
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Figure 1. (A) Structure of a sample Bayesian network. (B)An achieved 
joint probability factorization for this network: p(Xi, X2, X3, X4, X$) = 
p(X¿ • p(X2 I X¿ • p(X3 | XJ • p(X4 | X2, X3) • p(X5 IX3). 



p{Xl=xl,..., Xn=xn)=f[p{Xi=xi | Pa¿ = pa,). 
1=1 

A graphical representation of such a network is given 
by a directed graph, in which we put lines from X¡'s par­
ents (Pa¡) to X¡—see Figure 1. As shown in this figure, 
the approach reduces the number of variables needed to 
obtain the joint distribution over the five nodes. More 
specifically, the use of the Bayesian network in Figure 1 
reduces the number of variables from 31 to 11. 

To assess a Bayesian network, it is necessary to specify 
two things. (1) A structure for the network must be speci­
fied by means of a directed, acyclic graph that reflects the 
set of conditional (in)dependencies among the variables. 
Thus, the concept of conditional independence between 
triplets of variables is the foundation for understanding 
and interpreting the Bayesian network framework. Sub­
sequently, the structure constitutes the qualitative part 
of the model. (2) The unconditional probabilities for all 
root nodes—that is, nodes with no predecessors—must 
be specified as well as the conditional probabilities for 
all other nodes, given all possible combinations of each 
node's direct predecessors. These unconditional and con­
ditional probabilities constitute the quantitative part of 
the model. 

Once the Bayesian network is built, it constitutes an ef­
ficient framework for performing probabilistic inference 
(Lauritzen & Spiegelhalter, 1988). It allows us to assess 
a probability distribution over some variables of interest, 
given evidence of the values of some other variables in 
the net. Nevertheless, the initial problem of building the 
Bayesian network remains. The structure and conditional 
probabilities necessary for characterizing the network can 
be provided either externally, by experts—a process that 
is both time consuming and subject to mistakes—or by 
automatic learning from a database of cases. However, the 
learning task can be separated into two subtasks: structure 
learning—that is, identifying the topology of the Bayes­
ian network—and parametric learning. The second sub-
task is related to the estimation of the numerical variables 
(conditional probabilities) for a given Bayesian network 
topology. 

It is common to classify the different approaches to 
Bayesian network model induction according to the nature 
of the modeling. These approaches are based either on the 
detection of conditional (in)dependencies between triplets 
of variables or on score + search methods. 

In the first of these approaches, the output of the algo­
rithms is a directed, acyclic graph that represents a large 
percentage—or all, if possible—of these relations. Once 
the structure has been learned, the conditional probability 
distributions required to completely specify the model are 
estimated from the database. See Spirtes, Glymour, and 
Schemes (1993) for more details about this approach to 
Bayesian network modeling from data. 

Although an approach to model building by detecting 
conditional (in)dependencies is quite appealing, because 
of its closeness to the foundation of Bayesian networks, 
a large percentage of the structure-learning algorithms 

developed belong to the category of score + search meth­
ods. To use this approach to learning, we need to define 
a score metric that measures the goodness of fit of every 
candidate Bayesian network with respect to a data file of 
different cases. In addition, we need a search procedure 
that will allow us to move in an intelligent way through the 
space of possible directed, acyclic graphs. The most usual 
score metrics are penalized maximum likelihood, a Bayes­
ian score known as marginal likelihood, and scores based 
on information theory. With respect to the search proce­
dure, many different alternatives exist in the literature: 
greedy search, simulated annealing, genetic algorithms, 
taboo search, and so on. For a review of score + search 
methods for learning Bayesian networks from data, see 
Heckerman, Geiger, and Chickering (1995). 

3. CONCLUSIONS ABOUT HUMAN 
ASSESSMENT FROM INTERVIEWS 

WITH EXPERTS 

Both the readability and composition literatures agree 
that reading ability, prior knowledge, interest, and moti­
vation have influence over text comprehension and com­
position. Hence, we have chosen a sample that includes 
participants from those groups that have specific diffi­
culties and achievements in summary evaluation. As part 
of the experiment, experts working in the target contexts 
were interviewed. The goal was to identify the most rel­
evant issues in each learner group and to observe the ways 
these issues are assessed in practice. In a preliminary ap­
proach, primary and secondary education was chosen as 
representative of immature writing skill, and L2 learners 
were chosen as an immature group that tends to show lack 
of language ability and comprehension failures (see Sec­
tion 1). Finally, the university context was chosen as rep­
resentative of mature skills. Different requirements were 
reported by experts on the said groups. 

3.1. Primary and Secondary Education 
These learners use scaffolding, or a stepwise methodol­

ogy, to acquire summarization strategies. Our experts here 
follow a teaching strategy similar to the one defined by 
Cassany (1993), Fitzgerald (1987), and Inoue (2005). The 
main goal of this strategy is to learn how to abstract main 
concepts from text and, at the same time, to produce the 
required language to create a good summary. Evaluation 
is performed as one of the steps in the process, together 
with summarization instruction. Therefore, evaluation is 
gradual, and the evaluation mode would be considered 
assessment, as defined by Inoue. 

During the summary production process itself, learners 
use several tools that support summarization. Some of the 
important tools are concept maps and schema that allow 
selection and organization of main ideas from text. The 
use of these tools is considered good training in learning to 
identify relevant ideas, which has been found to be a proto­
typical difficulty in immature summarization (Manelis & 
Yekovich, 1984; Taylor, 1982). In addition, these tools are 
aided by theoretical materials on connectors; by feedback 



to prevent reiteration; by input on avoiding cut-and-paste 
strategies utilizing actual pieces from the text (Brown & 
Day, 1983); and by skills at using coherence, cohesion, 
adequacy, grammar, and so on. Teaching is mainly instruc­
tive, although collaborative learning, peer evaluation, and 
self-evaluation are also integrated in the learning process. 
Assessment is produced stepwise, with teachers defining 
the evaluation criteria at the beginning and learners work­
ing toward these evaluation goals by trial and error. In the 
end, learners produce a portfolio about the whole process. 
This portfolio contains all the steps learners have gone 
through during the summarization-instruction process, 
such as concept maps, schema, use of connectors, use of 
prepositions, and so on. In this way, primary education 
students learn text comprehension strategies, main-idea 
identification, use of connectors, text transformation, and 
other skills. Generally speaking, they gain competence 
with using discourse and abstraction. 

A few more considerations also need to be borne in 
mind. For instance, different text types derive from di­
verse writing requirements. In general, young summariz-
ers find narrative text easier to summarize than explicative 
text. According to experts, the reason behind this might be 
that in narrative text, the information normally follows a 
sequential order, whereas explicative text will not neces­
sarily follow this pattern. Our experts stated that because 
of their age, young summarizers have mainly been ex­
posed to storytelling and reading. This idea is supported 
by Taylor (1982), who stated that while learning to sum­
marize, young students tend to be more familiar with nar­
rative text. As a result, habituation and the general lack of 
a chronological structure in expository text make it dif­
ficult for them to summarize (Garner, 1987). 

Moreover, secondary education lecturers reported 
that students had difficulties when they were expected 
to change temporal or person references in text produc­
tion. In addition, prior familiarity with the content can 
determine text comprehension and main-idea identifi­
cation (Symons & Pressley, 1993). For these reasons, 
secondary-level teachers and lecturers tend to pay spe­
cial attention to reading-text selection, trying to find 
those that better match learners' previous knowledge 
and background. 

3.2. L2 Learning 
L2 summarizers are often mature summarizers in their 

first language but lack ability with the L2 (Kozminsky & 
Graetz, 1986; Long & Harding-Esch, 1978). Therefore, 
their problems are different, and their learning and evalua­
tion strategies vary from those of the previous learners. 

When evaluating, the L2 teachers we interviewed af­
firmed that they first look at main-idea identification, and 
then at language competence. They distinguish the rel­
evance of these variables according to learners' abilities 
and language levels. 

Moreover, the support they provide learners is based 
on the use of dictionaries, theory of grammar, and in 
some cases concept maps. Whether or not they use con­
cept maps depends on an L2 learner's personal criteria; 
whereas some L2 students tend to find such support help­

ful, others prefer to rely on their working memory capacity. 
Furthermore, the use of aid tools varies depending on L2 
ability, so that the more proficient learners are, the closer 
their needs are to those of native mature summarizers. In 
short, those with lower levels of L2 ability focus mainly 
on grammar, whereas those with higher levels focus more 
on comprehension and style. 

However, the L2 group's literacy level tends to be more 
heterogeneous than that of the primary and secondary 
group. Their summarization abilities depend on the one 
hand on their previous literacy, and on the other on their 
proficiency in the L2. However, the L2-learning group 
also requires specific training that does not necessarily 
match the needs of those with greater proficiency in the 
language. 

3.3. University 
According to our experts, the university group does 

not obtain any specific instructive training in summari­
zation at all. Aid tools are used by learners according to 
their own criteria. Their work is graded for summariza­
tion as well as for other abilities, but there is no formal 
training on summarization. It is assumed that these stu­
dents have proficient language abilities and are mature 
summarizers. 

Thus, the three groups we have described show differ­
ent contextual needs when producing summaries. A sum­
mary of the aid tools used by each of the three groups is 
shown in Table 1. 

Relevant variables identified thus far in a summariza­
tion environment are text related (text type, text present 
or absent, theme, and text length), aid tools (dictionaries, 
spelling and grammar check, theory on summarization 
strategies, concept maps and schema, etc.), summary re­
lated (adequacy, coherence, cohesion, use of language, 
and comprehension), or learner related (learner level, 
learner's prior knowledge, etc.). 

4. HUMAN SUMMARY-EVALUATION 
PERFORMANCE 

Using the information gathered from the rater inter­
views described in the previous section, we designed a 
summary-evaluation experiment. We concentrated on 
modeling a single reading text in order to observe the 
evaluation decision making performance of experts with 
different backgrounds. Hence, the goal was to observe un­
derlying evaluation patterns using a Bayesian graphical 
interface (Elvira Consortium, 2002). 

4.1. Method 
4.1.1. Participants. Most researchers agree on two primary tar­

get groups of interest: mature and immature summarizers (Brown 
& Day, 1983; Garner, 1982, 1987; Taylor, 1982). In addition, 
evidence supports the idea that the L2 group has specific char­
acteristics (Kozminsky & Graetz, 1986; Long & Harding-Esch, 
1978). The goal when choosing a varied sample of raters was to 
gain a fairly wide representation of expertise, to cover the ob­
served different target views in evaluation. The premise was that, 
if a common criterion was found among varied target disciplines 
or contexts, evidence on summary-evaluation agreement would be 



Table 1 
Aid Tools in Summarization 

Evaluation Context 

Aid Tool Primary & Secondary Education L2 Learning University 

Dictionaries Sometimes; students often ask 
about unknown terms 

Concept maps & schema Often used as part of the training 

Theory of grammar 

Summarization theory 

Sample summaries 

Rarely; students tend to ask 
when confused 

Teachers offer handouts and lec­
ture notes to support learners 

Good reading; sometimes 
students practice and observe 
good and bad summarization 
strategies 

Often; students also 
ask about unknown 
terms 

Depends on the 
user's criteria 

Often, in low levels 

Sometimes; hand­
outs and lecture 
notes 

Sometimes offered 
as a baseline 

Often 

Depends on the user's 
criteria on main-idea 
identification 

When language rules 
change 

None 

None 

stronger, and that such agreement would be even more likely to be 
maintained within the same discipline. 

Thus, we chose a sample of 15 participants, all of them experts on 
summary grading. In this sample, 5 were secondary school teach­
ers, 5 were L2 teachers, and the other 5 were university lecturers. 
Apart from the university lecturers, the raters taught and evaluated 
summarization skills on a regular basis and had worked in different 
educational contexts for more than a decade. The participants did not 
have contact with each other. 

4.1.2. Materials, Procedure, and Analysis. We maintained the 
same diversity of population in both summary collection (see the 
details in this section) and participant selection. The experiment in­
cluded a booklet containing some experimental instruction, the read­
ing text, five summaries, evaluation templates, and a definition of 
the evaluation variables. The data were analyzed using the Bayesian 
approach described at the end of this section. 

Experimental instructions. This text contained the basic guide­
lines for the task. After being informed of confidentiality issues and 
the purpose of the experiment, the participants evaluated five sum­
maries and responded to a questionnaire about their criteria and the 
methods they followed. 

Reading text. All of the summaries were written on the basis of the 
same reading text. It was 1,203 words in length and concerned the 
influence of doping in cycling races. The summarizers were simply 
asked to write a summary of the given text. 

Five summaries. A large sample of summaries was gathered from 
primary and secondary, L2, and university students. Five of these 
summaries were selected for experimental purposes. 

1. The first summary (SI) was written by a first-course secondary 
education student who wrote the summary by copying several sentences 
from the reading text. In other words, it was produced using the cut-and-
paste strategy described in Section 3.1. It contained 131 words. 

2. The second summary (S2) was written by a mature high-
intermediate L2 student of Basque and had 145 words. 

3. The third summary (S3) was created by another first-course 
secondary education student and was 107 words long. 

4. The fourth summary (S4) contained 222 words and was pro­
duced by a university student. 

5. Finally, the fifth summary (S5) was written by another mature 
high-intermediate L2 student of Basque and was 167 words long. 

The raters did not have any information on the summary writers' 
backgrounds and identities. All of the summaries were typed in the 
booklet in order to hide this information. The typed summary con­
tents were identical to those of the originals, including any orthogra­
phy and grammar errors. The only difference from the originals was 

that the booklet summaries were typewritten in order to avoid any 
possible inferences on ability based on handwriting. 

Evaluation templates. The quantitative data were obtained by rat­
ing summaries on a 0-10 scale, producing a global overall score 
and partial scores in cohesion, coherence, language, adequacy, and 
comprehension. These criteria are explained in Section 3. Moreover, 
the raters were requested to write comments on the text and/or to 
give any further information that they thought relevant. Hence, these 
qualitative data were included to detect information that was not 
acquired numerically. Both the quantitative and qualitative informa­
tion were obtained using a template that was common to all of the 
summaries. The raters were expected to fill in numeric evaluations, 
and space was left for free evaluation of the summary. 

Definition of each of the rating variables. All the raters had access 
to definitions of the evaluation variables on the last page of the ex­
perimental booklet. The partial-rating variables, primarily identified 
in primary and secondary education, were chosen as experimental 
variables because they represented all of the rating possibilities iden­
tified in the study. In other words, all of the reported possibilities 
were contained in these criteria. These variables also included rat­
ings proposed by other authors, mainly from detailed studies fo­
cusing on content coverage (Garner, 1982; Long & Harding-Esch, 
1978; Winograd, 1984), content coverage and coherence (Kozmin-
sky & Graetz, 1986; Taylor, 1982), and finally content coverage, 
adequacy, and coherence (Manelis &Yekovich, 1984). 

Probabilistic analysis. As has been stated, the goal was to predict 
the global scores of summaries by using the partial-grading and con­
text variables identified in the previous subsection. 

The variables for this experiment were the rating variables— 
adequacy, coherence, use of language, cohesion, comprehension, 
and global score—and the additional context variables—rater, sum­
mary (summary typology in certain rating range), and summary ori­
gin (the background of the summarizer). Other variables were kept 
constant here: text presence or absence (in this experiment, sum­
maries were produced in text-present mode), text type (which refers 
to the type of text, in this case explicative), text theme (cycling), text 
length (1,203 words), and aid tools (no aid tools were used while the 
five experimental summaries were produced). 

So, how do these partial variables relate to global score? The 
fields of statistics and machine learning have developed different 
approaches to solve this supervised classification problem: clas­
sification trees (Breiman, Friedman, Olshen, & Stone, 1984), clas­
sifier systems (Holland, 1975), discriminant analysis (Fisher, 1936), 
K-NN classifiers (Cover & Hart, 1967), logistic regression (Hosmer 
& Lemeshow, 1989), neural networks (McCulloch & Pitts, 1943), 
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Figure 2. Three Bayesian classifier structures 

rule induction (Clark & Niblett, 1989), and support vector machines 
(Cristianini & Shawe-Taylor, 2000), among others. Within these ap­
proaches, Bayesian networks are models that require some of the 
least effort in order to interpret the results. They have a straight 
graphical representation, allowing observation and understanding 
of the underlying probabilistic classification process. Moreover, it 
is possible to classify even when the values of all of the variables 
are not known (e.g., missing values). Considering these factors, we 
chose Bayesian classifiers as the paradigm for carrying out our su­
pervised classification task. 

Assuming a 0/1 loss function, a Bayesian classifier y(x) assigns 
the most a posteriori probable class to a given instance—that is, 

y(x) = argmax/>(c | x\. ,x„), 

where c represents the class variable to be predicted and xt, . . . , x„ 
are the values of the predictor variables. 

Using the Bayes formula (Bayes, 1764), we can express the a pos­
teriori probability of the class in this way: 

p(c\xu... ,x„)*p(c) -p(xu c). 

Now, assuming different factorizations for/'(x1, . . . , xn \ c), we can 
obtain a model hierarchy of increasing complexity between Bayes­
ian classifiers. In this article, we consider three paradigms for this 
hierarchy: naive Bayes, selective naive Bayes, and tree-augmented 
naive Bayes. 

Naive Bayes (Minsky, 1961) is a Bayesian supervised classifica­
tion algorithm built from the assumption of conditional independence 

of the predictive variables, given the class. From this assumption, we 
have 

p(xv...,xn \c) = \{p(x. c), 
! = 1 

and the naive Bayes classifier uses the following formula: 

y(x) = argmax P(c)U p(x. I c 

See Figure 2A for a graphical representation of a naive Bayes 
structure. 

The introduction of all of the predictive variables into a model 
can degrade the predictive accuracy of the naive Bayes classifier. In 
fact, the naive Bayes paradigm is robust with respect to irrelevant 
variables, but very sensitive to redundant or correlated variables. 
Therefore, a variable-selection process is required. This combina­
tion of feature subset selection and naive Bayes is known as a selec­
tive naive Bayes paradigm (Langley & Sage, 1994). It is similar to 
naive Bayes, but in this case not all of the predictive variables are 
used by the classifier. For its construction, a greedy search process 
is performed, looking for the subset of variables that maximizes 
the model classification power. Figure 2B presents a selective naive 
Bayes structure. 

Naive Bayes and selective naive Bayes are both unable, how­
ever, to deal with dependencies between the predictive variables. 
In domains in which the conditional independence between predic­
tor variables (given the class variable) is violated, the performance 
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of both paradigms can be very limited. One additional paradigm, 
the tree-augmented naive Bayes (TAN; Friedman, Geiger, & Gold-
szmidt, 1997), builds a classifier in which a probabilistic tree-like 
structure, built among the predictive variables, is extended with a 
naive Bayes structure. The method proposed by Friedman et al. is 
based on the computation of conditional mutual information be­
tween pairs of variables, 

i(x.,x. | c) =XXXHx>x'c) log p(x.,x\c\ 

p(x | c • p(x 

and forces us to construct a connected tree structure including all 
of the variables in the problem domain. However, as is explained 
in Section 4.2, our approach does not take all of the variables into 
account when building the classification model. See Figure 2C for 
a TAN model. 

We utilize an extension of the TAN model, known as the TAN 
filter approach. The original TAN algorithm requires construction 
of a connected tree structure with all of the variables in the prob­
lem domain. Our proposed filter approach (Blanco, Inza, Merino, 
Quiroga, & Larrañaga, 2005), however, allows us to not necessarily 
take all of the variables into account when building the classification 
model; instead, we use the subset of domain variables that overcome 
the X(r¡-i)(rQ-i);i-atest (Whittaker, 1990) to perform the classic TAN 
algorithm. 

4.2. Results and Discussion 
Our descriptive results show that S4 was rated high­

est overall, and S2 lowest. S2, S3, and S5 showed very 
similar overall grades, and SI was rated highest among 
the nonmature summanzers. A graphic representation of 
the overall and partial-score means can be seen in Fig­
ure 3. The lowest scores in language are assigned to the 
two L2 student summaries (S2 and S5). S2 had the lowest 
partial score in language but a relatively much higher one 
in comprehension. 

Overall, SI had a mean score of 5.4, S2 of 3.4, S3 of 
3.7, S4 of 8.9, and S5 of 3.9. The lowest mean score was 
produced by S2, with the lowest data point on the curve 
in language and the highest in comprehension. This result 
was followed by S3, with a low point in cohesion and a 
high in language. Then, S5 had its peaks in cohesion and 
language and a low point in comprehension. Next came 
SI, with its peaks in comprehension and language and 
low points in coherence and cohesion. Finally, the highest-
scored summary was S4, with a very homogeneous evalu­
ation: high scores in adequacy, coherence, language, com­
prehension, and overall score, and only a slightly lower 
score in cohesion. 

From the supervised point of view, the first aspects to 
take into account are the type of the class variable and the 
values that it takes. This variable distinguishes between the 
different classes found in a problem. In the present study, 
global score is our class variable. The second aspect to 
consider is that Bayesian networks deal only with discrete 
(categorical) data; six of the variables in our problem, in­
cluding the global score, are continuous. Hence, a catego­
rization process is necessary. This discretization process 
is supported by real educational context practice, in which 
numeric scores are categorized in standard marks. 

Since we are dealing with academic results, the chosen 
cutoff approach was to split them into three categories— 
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distinction, pass, wáfail. In this way, we can distinguish 
maximum, medium, and minimum performance levels. 

Once the three main categories were defined, the next 
step was to categorize the rest of the continuous variables. 
Bear in mind that the remaining variables had constant 
values in this study, and so could not be included. See 
Catlett (1991); Dougherty, Kohavi, and Sahami (1995); 
and Kerber (1992) for classical discrimination methods 
for continuous variables. All of these studies tried to fit the 
continuous plot of the function with the areas of disjoint 
intervals. This process has one primary inconvenience: It 
does not take into account any semantic information about 
the original variable. 

Because all of our continuous quantitative variables 
are scores between 0 and 10, we need to perform a more 
sophisticated discretization policy. One of the most ex­
tended discretization procedures in the machine learn­
ing domain is the entropy discretization (Fayyad & Irani, 
1993). This procedure uses the information provided by 
the class variable of the supervised problem to identify 
the best adequate disjoint discretization bins. On the basis 
of the variable marginal distributions given the class, a 
search process is performed to look for the points at which 
the marginal continuous functions change their behavior. 
This process could be done automatically, using a mea­
sure of entropy, or by hand, for each variable individually. 
In this work, considering that only five variables must be 
discretized, we chose to use a manual procedure by means 
of conditional histogram plots. 

For each continuous variable, histograms divided by the 
three possible states of global score have been generated— 
see Figure 4, in which the plots for coherence and cohe­
sion are displayed. We observed the points at which the 
values' behavior switched between classes; as Figure 4 
shows, three behavior changes are easily detected for both 
variables. On the basis of those trend-changing points, we 
could set the intervals for each individual categorization. 
Note that, similar to the examples in Figures 4A and 4B, 
three disjoint intervals were also detected for all the other 
continuous variables. 

The intervals used in the categorization process of each 
continuous variable are shown in Table 2. The first row 
shows the marks for the global score category. The rows 
below then list the disjoint intervals detected for the rest 
of the continuous variables, on the basis of the three cat­
egories defined for global score. 

4.2.1. Learning selective Bayesian classifiers. Once 
the data are ready for statistical treatment, the next step 
is to determine which of the available Bayesian classifi­
ers is the most suitable for the current problem. For this 
purpose, we have used the Elvira framework (Elvira Con­
sortium, 2002). Elvira is a software platform built to deal 
with graphical probabilistic models that allows a user to 
produce Bayesian models from raw data. 

As we mentioned in Section 2.2, there are two main 
issues when learning Bayesian networks: the structure of 
the graph and induction of the values associated with each 
of the probabilistic variables. In the structures presented 
in Section 4.1.2, we described four different Bayesian 

models for the data. The final goal was to observe the one 
that most accurately reflects human behavior. 

In order to analyze in depth the underlying process re­
flected by these data, it is necessary to select a model to 
work with. The chosen model must be the one that shows 
the best accuracy in predicting the class variable. A ro­
bust cross-validation analysis was performed consider­
ing sample size in order to better estimate the accuracy 
of each paradigm at predicting the class variable. Then, to 
determine a model's accuracy, a process of leaving-one-
out (loo) validation (Stone, 1974) was performed. A loo 
validation consists of learning a classification model with 
N— 1 cases from the original data—where N is the num­
ber of instances for the problem—in order to discover the 
class of the excluded Nth case. The excluded case is dif­
ferent in each loo iteration, and the model is learned using 
the rest of the data, which always include N— 1 cases. The 
process is repeated N times. In particular, for this work 
there were a total of 75 instances. Thus, for each clas­
sification model, 75 intermediate classifiers were learned 
and tested. Across the four different classification models, 
a total of 300 validation models were learned. Finally, an 
average and a standard deviation of the predictions were 
calculated in order to establish each model's accuracy. 

The accuracy measures are shown in Table 3. Of the 
four models, the naive Bayes and selective TAN obtained 
the best accuracy. The election between these two models 
was therefore made according to the semantic representa­
tions that each model could handle. As shown in the previ­
ous section, selective TAN is able to detect dependencies 
among the variables, an ability the naive Bayes paradigm 
does not have. Since we were mostly interested in variable 
relationships, the selective model was chosen as the model 
for the knowledge inference process. 

4.2.2. (In)Dependencies found by the selective TAN 
model. One of the most critical analyses in a discussion 
of the results obtained from a model is the presence or 

Table 2 
Categorization of the Quantitative Variables 

Global score 

Adequacy 
Coherence 
Cohesion 
Language 
Comprehension 

Fail 

[0,5) 

1st Interval 

[0,5) 
[0,4) 
[0,4) 
[0,6) 
[0,6) 

Pass 

[5,8) 

2nd Interval 

[5,8) 
[4,8) 
[4,7) 
[6,8) 
[6,9) 

Distinction 

[8, 10] 

3rd Interval 

[8, 10] 
[8, 10] 
[7, 10] 
[8, 10] 
[9, 10] 

Table 3 
Means and Standard Deviations of Leaving-One-Out 

Validations of the Different Bayesian Models 

Accuracy (%) 

Model M SD 

Naive Bayes 86.67 3.95 
Selective naive Bayes 80.00 4.65 
Tree-augmented naive Bayes 82.67 4.40 
Selective tree-augmented naive Bayes 86.67 3.95 
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absence of dependencies between the variables involved 
in the problem. In this case, selective TAN correctly pre­
dicted 86.67% of the categorical marks. The structure of 
this model, with the entire marginal probability distribu­
tion for the variables selected by the learning process, is 
shown in Figure 5. 

As a selective paradigm model, selective TAN tries to 
distinguish between relevant and irrelevant features of a 
problem and to include only the relevant ones. One of the 
studied variables, rater, is not present in the model, which 
means that this variable did not provide significant infor­
mation to the domain. This relevance result was verified 

using the nonpaired ¿-independent-samples Kruskal-
Wallis (1952) hypothesis test. The null hypothesis to test 
was that all the rest of the quantitative variables were 
independent of the rater variable. The obtained/? values 
were .254 for adequacy,. 155 for coherence, .433 for co­
hesion, .239 for language, .522 for comprehension, and 
.288 for global score. These/? values clearly show that 
the tested hypothesis could not be rejected. Bear in mind 
that this hypothesis contrast was performed using the 
original continuous values of the quantitative variables, 
and that all the p values make sense of the categoriza­
tion and modeling approach. Hence, the professional 
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background of the raters was not relevant when taking 
evaluation decisions in this model. Therefore, whether 
raters came from primary and secondary education, L2 
teaching, or a university, they all had similar evaluation 
criteria. 

The next consequences derived from this modeling ex­
periment are the independence of the predicting variables 
when global score is known and the conditional depen­
dency between origin and summary (see Figure 5). 

As a tree-augmented paradigm, selective TAN tries to 
set up conditional dependencies between variables. For 
this purpose, it uses statistical tests. The fact that only one 
dependency was fixed shows that no other combination of 
variables was able to pass the test threshold. Bear in mind 
that the simple naive Bayes obtained the same prediction 
accuracy, and this model assumes conditional indepen­
dence for each variable on the model. Thus, we can clearly 
state that adequacy, coherence, cohesion, language, ori­
gin, and comprehension were all conditional independent, 
given a global score. 

In other words, on the basis of conditional indepen­
dence, a sole evaluation of each independent variable is 
possible, given the class. An important consequence of 
this fact is the possibility of studying the changes between 
each of the predictive variables and global score in an in­
dependent way. Moreover, it is even possible to identify 
which of the variables were most relevant when deciding 
the final score provided to a learner summary. 

4.2.3. Probabilistic distributions on the propagation 
when deciding learner evaluation. On the basis of the 
probability variables learned by the classifier from human 
rating behavior, it is possible to determine changes in the 
a posteriori probabilities for each variable as evidence 
is found. Once evidence is selected in the graph for one 
or more variables, it is possible to propagate that fact to 
the rest of the nodes of the Bayesian network (Lauritzen 

& Spiegelhalter, 1988). As an example, three different 
pieces of evidence can be selected in order to observe the 
changes in the rest of the variables considering this partic­
ular sample. In Figure 6, a. fail mark is fixed for the global 
score variable, and the model shows in red the probabili­
ties that change. In other words, joint probabilities lead to 
this grade for our group of participants dealing with this 
particular text. 

Hence, in the example in Figure 6, the probability of 
achieving a language score between 0 and 5 rises to .84. 
At the same time, the probability of obtaining a score 
between 0 and 5 in comprehension goes up to .80. The 
rest of the variables do not show such significance for 
producing a. fail mark in global score. Therefore, the 
high probabilities for comprehension and language we 
obtained illustrate the fact that—according to our par­
ticipants' criteria—the borderline between a pass and a 
fail score is related to degree of understanding and use of 
language, which is consistent with previous work in L2 
learning (Kozminsky & Graetz, 1986; Long & Harding-
Esch, 1978) and immature summarization (Garner, 1982; 
Taylor, 1982). 

The second example illustrates the changes produced 
by fixing the global score on a pass mark. In this case— 
see Figure 7—the two most significant changes are in 
coherence and cohesion. The probability of achieving a 
score in the intervals [4, 8), and [4, 7), respectively, rises 
to .84 in both cases. 

Finally, when fixing a global score at the distinction 
level, three variables show significant changes—see Fig­
ure 8. Two of them are common to the evidence for pass 
grades: coherence and cohesion. However, for gaining 
a distinction mark, adequacy predominates. For all of 
the variables, the probability of achieving the highest 
rating interval rises to .85 when a distinction mark is 
observed. Thus, in this context, adequacy is the partial-
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rating variable that allows a mark to increase from pass 
to distinction, which is consistent with previous work 
that has argued that expert summarizers make decisions 
on the basis of the whole text, whereas poor readers and 
youngsters look mainly to sentences and details (Sher-
rard, 1989). 

This probabilistic model reflects the conjoint criteria 
shown by our participants and offers a framework for ob­
serving the extent to which success or failure on partial 
scores can lead to success or failure on the global score. 

4.2.4. Assessing the most probable explanation in the 
data relations. Magnani (2004) has claimed that abduc­
tion can be used to study cognitive activity in many areas 
of model-based reasoning. Abduction, or abduction infer­
ence, can be defined as "the process of obtaining the most 
plausible explanations for a sequence of observed facts." 
In the abduction process, the result is a hypothesis—that 
is, a possible explanation for the observed fact—and not a 
certain conclusion. The logical concept of abduction was 
first introduced by Aristotle and was borrowed into mod­
ern science by Peirce (1955). Therefore, abduction starts 
from consequences and looks for reasons. 

Table 4 
Most Probable Configurations of the Modeled Variables 

for a Given Mark 

Variable 

Adequacy 
Coherence 
Cohesion 
Comprehension 
Language 
Origin 
Summary no. 
Joint probability 

Fail 

[0,5) 
[0,4) 
[0,4) 
[0,6) 
[0,6) 

PR&SE 
S3 

.051 

Pass 

[5,8) 
[4,8) 
[4,7) 
[6,8) 
[6,9) 

PR&SE 
SI 

.047 

Distinction 

[8, 10] 
[8, 10] 
[7, 10] 
[8, 10] 
[9, 10] 
UNIV 

S4 
.206 

Note—PR&SE, primary and secondary education; UNIV, university. 

Within probabilistic systems, abduction focuses on a 
search for the configuration of values of the nonobserved 
variables that has the maximum probability (Pearl, 1987). 
The best explanation is the one that maximizes the prob-
abilityj9(configuration | evidence). Abduction in this case 
stands for the most plausible explanatory diagnostic cri­
teria, in line with the model-based abduction concept de­
fined by Magnani (2004). 

In Bayesian networks, abduction can be defined as a 
search for the configuration of states that yields the high­
est probability for the nonobserved variables. Different 
names can be found in the literature for the abduction pro­
cess, including search for the most probable explanation 
(Pearl, 1987) and search for the maximum a posteriori 
configuration (Shimony & Charniak, 1990). In this study, 
abductive inference is used to determine which were the 
common criteria in grader performance. 

The results for the abduction process in this study are 
gathered in Table 4. In each column, the most probable 
joint variable configuration is shown for each value of the 
global score variable. In other words, each configuration 
reflects the common evaluation model of the participants. 
The last row reflects the joint probability distribution ob­
tained for that configuration. The total number of possible 
combinations of variables in this study is higher than 10.4. 
Therefore, the joint probabilities obtained via abduction 
in Table 4 for the gathered configuration are considerably 
greater than would be expected purely by chance (2.74 * 
10~4). After considering the studied context and the given 
configuration, it can be said that in order to gain a distinc­
tion score in this particular task, the following joint con­
figuration would be required: a score from 8 to 10 in ad­
equacy, a coherence score from 8 to 10, a cohesion score 
from 7 to 10, a comprehension score from 8 to 10, and a 
score in use of language of either 9 or 10. The prototypical 
summary for this category would be S4, and the likeliest 



level where this performance could occur would be at a 
university. Therefore, abduction analysis presents the joint 
criteria, or the criteria that are common to all graders. 

5. CONCLUSIONS 

The philosophy behind this study was to observe 
human evaluation first, and then to move toward a model 
of summary-evaluation decisions. Therefore, we found it 
relevant to analyze why we would use each grading mea­
sure and how each was related to potential users in an 
education setting. 

As was mentioned in Section 1, one of the issues we 
wished to address was the common perception in summary 
assessment of the high subjectivity of evaluation decisions 
(Sherrard, 1989). Research in collaborative teaching, 
however, has reported the need to agree on grading criteria 
(Genesee & Upshur, 1996; Robinson & Schaible, 1995). In 
addition, Page (2003) defends the assumption that variety 
among judges allows a closer approximation to the truth 
behind a grade. In our case, this modeling approach al­
lowed us to analyze how score variation can be attributed to 
a number of components or facets of measurement. In other 
words, this approach permits one to analyze quantified re­
sults and the relative contributions of a number of sources 
of variation (Cizek & Page, 2003). To this assumption, this 
work also added a developmentally relevant variety of con­
texts and judges. Grounded in this framework, Bayesian 
networks were then trained to analyze the procedure that 
raters followed toward each global evaluation grade. 

From interviews and analysis of previous work, we con­
cluded that the most complex evaluation criterion shown 
by our experimental participants contained elements of 
less complex evaluation criteria. Bearing in mind that the 
proposed Bayesian model can also estimate probabilities 
with a smaller number of variables, we chose a paradigm 
in which the most complex approach included simpler 
configurations. 

In this Bayesian analysis, the irrelevance of the rater 
variable that we observed in the graphical representation 
supports the idea that the graders' decisions were based on 
common criteria (see Section 4.2.2). It shows that, under­
neath the apparent subjectivity of the decisions, graders 
from critically different professional contexts displayed 
common assessment tendencies. 

From interviews with experts, it turned out that our rat­
ers took decisions on the basis of summarization prerequi­
sites and what they remembered as being the most relevant 
features of the text. Decisions were based on comparisons 
of their mental representations of an expected summary 
text with the features found in each of the evaluated sum­
maries. Thus, it could be assumed that their mental rep­
resentations, mental summaries, or text macrostructures 
(Kintsch & van Dijk, 1978) had many features in common. 
The content of this interrater common view was gathered 
and represented in the abduction results shown in Table 4. 
Then, this abductive evaluation was analyzed to determine 
the specific criteria shown by our participants, or their 
common grading mental model. Magnani (2001) asserted 

that a considerable part of thinking is model based, and 
model-based reasoning acquires relevance by being em­
bedded in abductive processes. 

Empirical support for the variable configuration was in­
ferred from the resultant variables' mutual independence. 
This independence showed that the grading variables we 
chose on the basis of expert experience and previous re­
search also had empirical entity by themselves. As a result, 
evaluation of each individual variable on its own was pos­
sible. This implied the possibilities that we could identify 
which variables were most relevant to our participants, how 
each affected the final score, which differences could be 
found for certain grades, what the probability configura­
tions were for certain grading levels, and so on. The Bayes­
ian graphical framework allowed us to visually analyze the 
impact of performance on the global summary score. 

Previous research reported that large amounts of ir­
relevant information in a summary, copying parts of the 
text, and comprehension failures would indicate a poor 
summary. This left open the question, however, of what 
graders expect from a mature summary. Our framework 
allowed us to visually observe this type of information. 
Thus, given the studied context and a particular configu­
ration, based on our participants' criteria, the borderline 
between a pass and a. fail score was related to degree of 
understanding and use of language, which is consistent 
with previous work on L2 learning (Kozminsky & Graetz, 
1986; Long & Harding-Esch, 1978) and immature sum­
marization (Garner, 1982; Taylor, 1982). To gain a pass 
mark, the two most significant changes were in coher­
ence and cohesion. For a distinction score, three variables 
showed significant changes: Two of them were common 
to the pass mark (coherence and cohesion), but in order 
to gain a distinction mark, adequacy was of prime impor­
tance. Thus, adequacy was the partial-rating variable that 
increased a mark from pass to distinction. This is consis­
tent with previous research, which has argued that expert 
summarizers make decisions on the basis of the whole 
text, whereas poor readers and youngsters look mainly at 
sentences and details (Sherrard, 1989). 

A summary-evaluation framework can have relevant 
applications within both computer-aided educational 
environments and traditional educational contexts. The 
relevance of this capability in learning contexts is sup­
ported by the demands for instructional modeling re­
sources, reported in the literature on intelligent tutoring 
systems (Virvou & Moundridou, 2001), and for mutual 
collaborative apprenticeship in education (Glazer & Han-
nafin, 2006). Teachers have reported that they saw then-
own teaching much more clearly as a consequence of a 
grading performance analysis, which in turn made them 
more critical and deliberate in their work (Goldberg & 
Roswell, 1999). In various learning contexts, the present 
framework provides a graphical environment for observ­
ing the evaluation performance of instructors or graders, 
beyond simple self-perception. 

In education contexts, common grading experience has 
been observed as a valuable aid to reconsidering teach­
ing practice, making professionals more thoughtful and 



more focused on determining the goals of their teaching 
(Goldberg & Roswell, 1999; Robinson & Schaible, 1995). 
The present decision-making model can allow one to con­
figure a scenario and analyze how the decisions made will 
affect global score. In this way, the perception of grading 
criteria goes beyond mere beliefs to actual performance 
analysis. 

In this article, we have reported how teachers adapt 
their evaluation focus according to summarizers' learn­
ing stages (see Sections 1 and 3). Similarly, our modeling 
analysis makes it possible to adapt summary-evaluation 
decisions to the different educational scenarios under a 
common grading criteria. The Bayesian evaluation model 
serves as a diagnostic framework for adapting instruction 
to learner needs. For instance, by selecting the L2 option 
within the origin variable in the graph, it is possible to ob­
serve the most probable summary-evaluation configura­
tion for this specific context. This knowledge can then be 
used to make evaluation decisions for a variety of criteria, 
not just on the basis of the provided individual grading 
variables, but also when selecting only some of the vari­
ables or groups of them, depending on the goals involved. 
For example, it is possible to provide global grade estima­
tions only for comprehension; for comprehension and lan­
guage; or for comprehension, cohesion, and coherence; 
the most probable configuration for a distinction global 
score, or for each of the categories studied within a vari­
able, could also be determined. 

Moreover, research has found that some graders are un­
familiar with the precise indicators of proficiency (Gold­
berg & Roswell, 1999). A performance-based approach 
allows not only for graders to improve their analysis of 
their own performance, but also for learners to clearly 
identify grading criteria. In a similar way, learners also 
gain information from open learner models (Bull & 
Pain, 1995; Cook & Kay, 1994; Dimitrova, 2003). This 
framework could be used as an open evaluation model to 
increase summary graders' awareness of evaluation im­
pact or to show grading criteria to learners. Professional 
communication is difficult and time consuming (Glazer 
& Hannafin, 2006). The need for clear evaluative crite­
ria that coincide precisely with description (Goldberg & 
Roswell, 1999) has been shown in the setting of writing 
evaluations. Such modeling can help in observing and 
discussing performance and in agreeing on criteria that 
could be handled objectively. It can be applied in collab­
orative instructional settings, as well as in other settings 
where professionals are required to coordinate criteria 
with peers. The relevance of showing agreement is high, 
since any differences that a learner sees between graders 
can be magnified in learners' eyes (Bandura, 1977; Bower 
&Hilgard, 1981). 

The common abduction model can also be used by 
learners to acquire awareness of summary-evaluation cri­
teria in greater detail. Showing learners the open evalua­
tion model in full, or just in certain aspects relevant to an 
instructor's evaluation criteria, can allow them to gain a 
deeper understanding of the graders' evaluation styles and 
a better awareness of the instructor's expectations. A com­

mon fear of learners in a grading context is the impact that 
subjectivity might have on their marks. This framework 
can provide a context in which decisions are influenced 
only by the previous grading performance of graders in­
cluded in the model. 

The model is also a user-friendly, intuitive utility that 
does not require any formal training in Bayesian net­
works or in any other discipline. Little effort is required 
in terms of the inputting of expert educational data. It 
also has the advantage of providing a framework that is 
easily handled; a simple Web application gathers data on 
summary-evaluation criteria to feed the Bayesian model­
ing framework. 

The aim of this work was, first, to observe how this 
particular knowledge evaluation mode is dealt with in 
real educational contexts, and then to use this knowledge 
to offer tools adapted to common grading practice. This 
framework could be adapted to automatic grading systems 
that contain grades for the observed variables. Our follow­
ing work is focused on producing automatic measures for 
individual variable grades using latent semantic analysis 
(Landauer & Dumais, 1997) and natural language pro­
cessing tools. An example of this work is automatic mod­
eling of cohesion and comprehension (Zipitria, Arruarte, 
& Elorriaga, 2006). Our future work plans include analy­
ses of further educational contexts and of mathematical 
modeling. 
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