1,748 research outputs found

    Using network analysis for the prediction of treatment dropout in patients with mood and anxiety disorders: a methodological proof-of-concept study

    Get PDF
    There are large health, societal, and economic costs associated with attrition from psychological services. The recently emerged, innovative statistical tool of complex network analysis was used in the present proof-of-concept study to improve the prediction of attrition. Fifty-eight patients undergoing psychological treatment for mood or anxiety disorders were assessed using Ecological Momentary Assessments four times a day for two weeks before treatment (3,248 measurements). Multilevel vector autoregressive models were employed to compute dynamic symptom networks. Intake variables and network parameters (centrality measures) were used as predictors for dropout using machine-learning algorithms. Networks for patients differed significantly between completers and dropouts. Among intake variables, initial impairment and sex predicted dropout explaining 6% of the variance. The network analysis identified four additional predictors: Expected force of being excited, outstrength of experiencing social support, betweenness of feeling nervous, and instrength of being active. The final model with the two intake and four network variables explained 32% of variance in dropout and identified 47 out of 58 patients correctly. The findings indicate that patients’ dynamic network structures may improve the prediction of dropout. When implemented in routine care, such prediction models could identify patients at risk for attrition and inform personalized treatment recommendations.This work was supported by the German Research Foundation National Institute (DFG, Grant nos. LU 660/8-1 and LU 660/10-1 to W. Lutz). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript. The corresponding author had access to all data in the study and had final responsibility for the decision to submit for publication. Dr. Hofmann receives financial support from the Alexander von Humboldt Foundation (as part of the Humboldt Prize), NIH/NCCIH (R01AT007257), NIH/NIMH (R01MH099021, U01MH108168), and the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition - Special Initiative. (LU 660/8-1 - German Research Foundation National Institute (DFG); LU 660/10-1 - German Research Foundation National Institute (DFG); Alexander von Humboldt Foundation; R01AT007257 - NIH/NCCIH; R01MH099021 - NIH/NIMH; U01MH108168 - NIH/NIMH; James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition - Special Initiative)Accepted manuscrip

    Is there an evidence-based number of sessions in outpatient psychotherapy? – A comparison of naturalistic conditions across countries

    Get PDF
    Deciding on the number of psychotherapy sessions to satisfactorily treat a patient is a vital clinical as well as economic issue in most mental health systems worldwide. The length of outpatient psychotherapy in naturalistic conditions ranges from a single session to hundreds of sessions [1]. In randomized clinical trials, the number of sessions is typically fixed to deliver manualized treatments and to control for dosage effects (e.g., in a 16-session format [2]). Using data from Routine Outcome Monitoring studies [3, 4], we investigated whether the treatments under naturalistic conditions were fixed to a particular number of sessions or not (H1), whether naturalistic conditions tended to include unusually long treatments (e.g., >100 sessions) (H2), and how the observed number of sessions was distributed across countries (H3)

    Self-consistent Coulomb picture of an electron-electron bilayer system

    Full text link
    In this work we implement the self-consistent Thomas-Fermi approach and a local conductivity model to an electron-electron bilayer system. The presence of an incompressible strip, originating from screening calculations at the top (or bottom) layer is considered as a source of an external potential fluctuation to the bottom (or top) layer. This essentially yields modifications to both screening properties and the magneto-transport quantities. The effect of the temperature, inter-layer distance and density mismatch on the density and the potential fluctuations are investigated. It is observed that the existence of the incompressible strips plays an important role simply due to their poor screening properties on both screening and the magneto-resistance (MR) properties. Here we also report and interpret the observed MR Hysteresis within our model.Comment: 12 pages, 12 figures, submitted to PR

    Semiclassical theory of electron drag in strong magnetic fields

    Full text link
    We present a semiclassical theory for electron drag between two parallel two-dimensional electron systems in a strong magnetic field, which provides a transparent picture of the most salient qualitative features of anomalous drag phenomena observed in recent experiments, especially the striking sign reversal of drag at mismatched densities. The sign of the drag is determined by the curvature of the effective dispersion relation obeyed by the drift motion of the electrons in a smooth disorder potential. Localization plays a role in explaining activated low temperature behavior, but is not crucial for anomalous drag per se.Comment: 10 page

    Studies of dust from JET with the ITER-Like Wall: Composition and internal structure

    Get PDF
    Results are presented for the dust survey performed at JET after the second experimental campaign with the ITER-Like Wall: 2013–2014. Samples were collected on adhesive stickers from several different posi- tions in the divertor both on the tiles and on the divertor carrier. Brittle dust-forming deposits on test mirrors from the inner divertor wall were also studied. Comprehensive characterization accomplished by a wide range of high-resolution microscopy techniques, including focused ion beam, has led to the iden- tification of several classes of particles: (i) beryllium flakes originating either from the Be coatings from the inner wall cladding or Be-rich mixed co-deposits resulting from material migration; (ii) beryllium droplets and splashes; (iii) tungsten and nickel-rich (from Inconel) droplets; (iv) mixed material layers with a various content of small (8–200 nm) W-Mo and Ni-based debris. A significant content of nitrogen from plasma edge cooling has been identified in all types of co-deposits. A comparison between particles collected after the first and second experimental campaign is also presented and discussed.EURATOM 63305

    Quantum mechanics on a circle: Husimi phase space distributions and semiclassical coherent state propagators

    Get PDF
    We discuss some basic tools for an analysis of one-dimensionalquantum systems defined on a cyclic coordinate space. The basic features of the generalized coherent states, the complexifier coherent states are reviewed. These states are then used to define the corresponding (quasi)densities in phase space. The properties of these generalized Husimi distributions are discussed, in particular their zeros.Furthermore, the use of the complexifier coherent states for a semiclassical analysis is demonstrated by deriving a semiclassical coherent state propagator in phase space.Comment: 29 page
    • 

    corecore