90 research outputs found

    IN VITRO ANTIDIABETIC POTENTIALS OF SIDA ACUTA, ABUTILON INDICUM AND MALVASTRUM COROMANDELIANUM

    Get PDF
    Objective: Starch metabolizing enzyme inhibitors are able to retard postprandial glucose absorption. This study aimed to investigate the in vitro inhibitory activities of alpha-glucosidase and alpha-amylase of three Malvaceous weeds i.e. Sidaacuta Burm. f., Abutilon indicum (Linn.) Sweet and Malvastrumcoromandelianum (Linn.) Garcke. Methods: The stems, roots and leaves of S. acuta, A. indicum and M. coromandelianum were sequentially extracted in dichloromethane and methanol, respectively. All fractions were tested for the inhibitory activities on yeast alpha-glucosidase, rat intestinal alpha-glucosidase and porcine alpha-amylase. p-Nitrophenyl-Îą-D-glucopyranoside and 2-chloro-4 nitrophenol-Îą-D- maltotrioside were used as the substrate for glucosidase and amylase respectively. Results: The dichloromethane fraction of the roots and stems from A. indicum and dichloromethane as well as methanolic fractions of the stems of M. coromandelianum could inhibit yeast alpha-glucosidase compared to 1-deoxynojirimycin with the IC50 of 0.36, 0.45, 0.48, 0.48 and 0.58 mg/ml respectively. A. indicum root methanolic fraction had the highest inhibitory effect on rat alpha-glucosidase activity compared to 1-deoxynojirimycin with the IC50 of 0.08 and 0.11 mg/ml respectively. M. coromandelianum, the dichloromethane fraction of roots and the methanolic fraction of stems, showed the strongest effect on alpha-amylase inhibition compared to acarbose with the IC50 of 0.07, 0.07 and 2.7 mg/ml, respectively. Conclusion: S. acuta, A. indicum and M. coromandelianum dichloromethane and methanolic fractions of the root, stem and leaf parts demonstrated an appreciable inhibitory activity on alpha-amylase from porcine, alpha-glucosidase from Saccharomyces cerevisiae and from rat intestine compared to 1-deoxynojirimycin and acarbose

    Pharmacognostic Specification and Coumarin Content of Alyxia reinwardtii Inner Bark

    Get PDF
    Alyxia reinwardtii Blume is used in traditional medicine for a long time. This study was carried out to investigate the standardization parameters by qualitative and quantitative analyses as well as coumarin content of A. reinwardtii inner bark. Loss on drying, total ash, acid-insoluble ash, water soluble extractives, ethanol soluble extractives and moisture contents were found to be 8.1 Âą 0.2, 7.6 Âą 0.1, 1.4 Âą 0.1, 16.5 Âą 0.1 , 8.9 Âą 0.3 and 11.9 Âą 0.2% by dry weight, respectively. Coumarin in dichloromethane extract of A. reinwardtii inner bark was analysed by thin layer chromatography (TLC) using silica gel 60 F254 as stationary phase, hexane and ethyl acetate (1 : 1) as mobile phase. The content was evaluated by image analysis using image J software. The regression line of method was polynomial in range of 0.075 - 1.2 mg/spot, and correlation coefficients (R2) were 0.99. The repeatability and intermediate precisions were between 0.5 - 7.1% RSD. The percent recovery was found to be 96.8 - 107.3%. The robustness evaluated by slightly variation in mobile phase ratio was 1.3% RSD. Limit of detection (LOD) and limit of quantitation (LOQ) were 0.05 and 0.16 mg/spot respectively. The coumarin content in A. reinwardtii inner bark crude drug was found to be 0.75 Âą 0.01% by dry weight. This study provided pharmacognostic specification toward fundamental standardization of A. reinwardtii inner bark. Additionally, the simple TLC with image analysis can be applied to quantitatively determine coumarin in plant material

    āļ›āļĢāļīāļĄāļēāļ“āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āđƒāļ™āđƒāļšāļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„ āļ—āļĩāđˆāļžāļšāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđ‚āļ”āļĒāļ§āļīāļ˜āļĩ RP-HPLC RP-HPLC Preliminary Analysis of Quercetin and Quercitrin Contents in Bauhinia spp. Leaves Distributed in Thailand

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āđ€āļžāļ·āđˆāļ­āļŦāļēāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āđƒāļ™āđƒāļšāļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āđ€āļāđ‡āļšāđƒāļšāđ€āļžāļŠāļĨāļēāļ”āļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„āļ—āļąāđ‰āļ‡ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ āļ™āļģāļĄāļēāļ—āļģāļ„āļ§āļēāļĄāļŠāļ°āļ­āļēāļ” āļ­āļšāđāļŦāđ‰āļ‡ āđāļĨāļ°āļŠāļāļąāļ”āļ”āđ‰āļ§āļĒāđ€āļ­āļ—āļēāļ™āļ­āļĨ (āļĢāđ‰āļ­āļĒāļĨāļ° 95) āđ‚āļ”āļĒāļāļēāļĢāļŠāļāļąāļ”āđāļšāļšāļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡ āđāļĒāļāļŠāļēāļĢāđ‚āļ”āļĒāļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡ āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 35 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ„āļ­āļĨāļąāļĄāļ™āđŒ InersilÂŪ ODS-3 C18 āđ€āļ›āđ‡āļ™āđ€āļŸāļŠāļ„āļ‡āļ—āļĩāđˆ āđāļĨāļ°āđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ‚āļ­āļ‡āļāļĢāļ”āļŸāļ­āļŠāļŸāļ­āļĢāļīāļ (āļĢāđ‰āļ­āļĒāļĨāļ° 0.5) āļāļąāļšāđ€āļĄāļ—āļēāļ™āļ­āļĨ āđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ 1 āļ•āđˆāļ­ 1 āđ€āļ›āđ‡āļ™āđ€āļŸāļŠāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆ āļ•āļĢāļ§āļˆāļ§āļąāļ”āļ›āļĢāļīāļĄāļēāļ“āđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āļ”āđ‰āļ§āļĒāļ”āļĩāđ€āļ—āļ„āđ€āļ•āļ­āļĢāđŒāļŠāļ™āļīāļ”āđ‚āļŸāđ‚āļ•āđ‰āđ„āļ”āđ‚āļ­āļ”āļ­āļēāđ€āļĢāļĒāđŒāļ—āļĩāđˆ 255 āļ™āļēāđ‚āļ™āđ€āļĄāļ•āļĢ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āđ€āļ–āļēāđƒāļŦāđ‰āļ›āļĢāļīāļĄāļēāļ“āļŠāļīāđˆāļ‡āļŠāļāļąāļ”āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” (36.13 āļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡) āđāļĨāļ°āđ€āļŠāļĩāđ‰āļĒāļ§āļ”āļ­āļāļ‚āļēāļ§āđƒāļŦāđ‰āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™ (16.06 āļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡) āļāļēāļŦāļĨāļ‡ āđƒāļšāđ„āļĄāđ‰āļŠāļĩāļ—āļ­āļ‡ āļāļēāļŦāļĨāļ‡āļ”āļ­āļāđāļ”āļ‡ āđ€āļ–āļēāđ„āļŸ āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āđ€āļ–āļē āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§ āļ›āļ­āđ€āļāļĩāđ‹āļĒāļ™ āļŠāļ‡āđ‚āļ„āļ”āļģ āļŠāļ‡āđ‚āļ„ āđ€āļ–āļēāļāļĢāļ°āđ„āļ”āļĨāļīāļ‡ āļŠāļĢāđ‰āļ­āļĒāļŠāļĒāļēāļĄ āļŠāļīāļĢāļīāļ™āļ˜āļĢāļ§āļąāļĨāļĨāļĩ āđ€āļ–āļēāļ‚āļĒāļąāļ™ āđāļĨāļ°āļ„āļīāđ‰āļ§āļ™āļēāļ‡ āļžāļšāļ—āļąāđ‰āļ‡āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āļžāļšāļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āđ€āļ—āđˆāļēāļāļąāļš 191.81 and 373.97 āļĄāļīāļĨāļĨāļīāļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡ āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™āđ„āļĄāđˆāļžāļšāđƒāļ™āđāļŠāļĨāļ‡āļžāļąāļ™ āļŠāļ‡āđ‚āļ„āļ™āļē āđ€āļŠāļĩāđ‰āļĒāļ§āļ›āđˆāļē āđāļĨāļ°āđ‚āļĒāļ—āļ°āļāļē āļŠāđˆāļ§āļ™āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āđ„āļĄāđˆāļžāļšāđƒāļ™āđāļŠāļĨāļ‡āļžāļąāļ™āđ€āļ–āļē āđāļĨāļ°āđ€āļŠāļĩāđ‰āļĒāļ§āļ”āļ­āļāļ‚āļēāļ§ āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ„āļ§āļēāļĄāđƒāļŠāđ‰āđ„āļ”āđ‰āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ„āļ”āđ‰āļ–āļđāļāļ—āļ”āļŠāļ­āļšāđ€āļžāļ·āđˆāļ­āļĒāļ·āļ™āļĒāļąāļ™āļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģ āđāļĨāļ°āļ–āļđāļāļ•āđ‰āļ­āļ‡āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āļŠāļĢāļļāļ›: āļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡āđ‚āļ”āļĒāļ”āļĩāđ€āļ—āļ„āđ€āļ•āļ­āļĢāđŒāļŠāļ™āļīāļ”āđ‚āļŸāđ‚āļ•āđ‰āđ„āļ”āđ‚āļ­āļ”āļ­āļēāđ€āļĢāļĒāđŒāļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ”āļĩāđƒāļ™āļāļēāļĢāđāļĒāļāđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āđƒāļ™āļžāļ·āļŠāļŠāļāļĨāļļāļŠāļ‡āđ‚āļ„āļ—āļąāđ‰āļ‡ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ āļ„āļģāļŠāļģāļ„āļąāļ: āļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„, āđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™, āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™, āļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡Abstract Objective: To preliminarily quantitate quercetin and quercitrin in mature leaves of Bauhinia species distributed throughout Thailand using RP-HPLC analysis. Methods: Mature leaves of 20 Bauhinia species were collected, cleaned and exhaustively extracted with 95% ethanol using Soxhlet apparatus. The ethanolic extracts were injected to InertsilÂŪ ODS-3 C18 column at 35 šC. The elution solvent was 0.5% phosphoric acid:methanol (1:1) at the flow rate of 1.0 ml/min. Photo-diode array detector was set at 255 nm. Results: The highest yield was found in B. lakhonensis (36.13 g/100 g dried leaves) and the lowest yield in B. variegata (16.06 g/100 g dried leaves). B. acuminata, B. aureifolia, B. galpinii, B. integrifolia, B. lakhonensis, B. malabarica, B, ornata, B. pottsii, B. purpurea, B. scandens, B. siamensis, B. sirindhorniae, B. strychnifolia and B. winitii were found to have both quercetin and quercitrin. The highest contents of quercetin and quercitrin were found in B. malabarica as 191.81 and 373.97 mg/100 g dried leaves, respectively. Quercetin was not found in B. pulla, B. racemosa, B. saccocalyx, and B. tomentosa. Quercitrin was not found in B. bracteata, and B. variegata. The validity of the analysis was in the acceptable range. Conclusion: RP-HPLC with PDA detector performed a good separation and could quantitate quercetin and quercitrin content in selected 20 Bauhinia species distributed throughout Thailand. Keywords: Bauhinia spp., quercetin, quercitrin, RP-HPL

    āļ›āļĢāļīāļĄāļēāļ“āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āđƒāļ™āđƒāļšāļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„ āļ—āļĩāđˆāļžāļšāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđ‚āļ”āļĒāļ§āļīāļ˜āļĩ RP-HPLC RP-HPLC Preliminary Analysis of Quercetin and Quercitrin Contents in Bauhinia spp. Leaves Distributed in Thailand

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āđ€āļžāļ·āđˆāļ­āļŦāļēāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āđƒāļ™āđƒāļšāļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āđ€āļāđ‡āļšāđƒāļšāđ€āļžāļŠāļĨāļēāļ”āļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„āļ—āļąāđ‰āļ‡ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ āļ™āļģāļĄāļēāļ—āļģāļ„āļ§āļēāļĄāļŠāļ°āļ­āļēāļ” āļ­āļšāđāļŦāđ‰āļ‡ āđāļĨāļ°āļŠāļāļąāļ”āļ”āđ‰āļ§āļĒāđ€āļ­āļ—āļēāļ™āļ­āļĨ (āļĢāđ‰āļ­āļĒāļĨāļ° 95) āđ‚āļ”āļĒāļāļēāļĢāļŠāļāļąāļ”āđāļšāļšāļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡ āđāļĒāļāļŠāļēāļĢāđ‚āļ”āļĒāļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡ āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 35 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ„āļ­āļĨāļąāļĄāļ™āđŒ InersilÂŪ ODS-3 C18 āđ€āļ›āđ‡āļ™āđ€āļŸāļŠāļ„āļ‡āļ—āļĩāđˆ āđāļĨāļ°āđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ‚āļ­āļ‡āļāļĢāļ”āļŸāļ­āļŠāļŸāļ­āļĢāļīāļ (āļĢāđ‰āļ­āļĒāļĨāļ° 0.5) āļāļąāļšāđ€āļĄāļ—āļēāļ™āļ­āļĨ āđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ 1 āļ•āđˆāļ­ 1 āđ€āļ›āđ‡āļ™āđ€āļŸāļŠāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆ āļ•āļĢāļ§āļˆāļ§āļąāļ”āļ›āļĢāļīāļĄāļēāļ“āđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āļ”āđ‰āļ§āļĒāļ”āļĩāđ€āļ—āļ„āđ€āļ•āļ­āļĢāđŒāļŠāļ™āļīāļ”āđ‚āļŸāđ‚āļ•āđ‰āđ„āļ”āđ‚āļ­āļ”āļ­āļēāđ€āļĢāļĒāđŒāļ—āļĩāđˆ 255 āļ™āļēāđ‚āļ™āđ€āļĄāļ•āļĢ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āđ€āļ–āļēāđƒāļŦāđ‰āļ›āļĢāļīāļĄāļēāļ“āļŠāļīāđˆāļ‡āļŠāļāļąāļ”āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” (36.13 āļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡) āđāļĨāļ°āđ€āļŠāļĩāđ‰āļĒāļ§āļ”āļ­āļāļ‚āļēāļ§āđƒāļŦāđ‰āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™ (16.06 āļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡) āļāļēāļŦāļĨāļ‡ āđƒāļšāđ„āļĄāđ‰āļŠāļĩāļ—āļ­āļ‡ āļāļēāļŦāļĨāļ‡āļ”āļ­āļāđāļ”āļ‡ āđ€āļ–āļēāđ„āļŸ āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āđ€āļ–āļē āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§ āļ›āļ­āđ€āļāļĩāđ‹āļĒāļ™ āļŠāļ‡āđ‚āļ„āļ”āļģ āļŠāļ‡āđ‚āļ„ āđ€āļ–āļēāļāļĢāļ°āđ„āļ”āļĨāļīāļ‡ āļŠāļĢāđ‰āļ­āļĒāļŠāļĒāļēāļĄ āļŠāļīāļĢāļīāļ™āļ˜āļĢāļ§āļąāļĨāļĨāļĩ āđ€āļ–āļēāļ‚āļĒāļąāļ™ āđāļĨāļ°āļ„āļīāđ‰āļ§āļ™āļēāļ‡ āļžāļšāļ—āļąāđ‰āļ‡āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āļžāļšāļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āđ€āļ—āđˆāļēāļāļąāļš 191.81 and 373.97 āļĄāļīāļĨāļĨāļīāļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡ āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™āđ„āļĄāđˆāļžāļšāđƒāļ™āđāļŠāļĨāļ‡āļžāļąāļ™ āļŠāļ‡āđ‚āļ„āļ™āļē āđ€āļŠāļĩāđ‰āļĒāļ§āļ›āđˆāļē āđāļĨāļ°āđ‚āļĒāļ—āļ°āļāļē āļŠāđˆāļ§āļ™āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āđ„āļĄāđˆāļžāļšāđƒāļ™āđāļŠāļĨāļ‡āļžāļąāļ™āđ€āļ–āļē āđāļĨāļ°āđ€āļŠāļĩāđ‰āļĒāļ§āļ”āļ­āļāļ‚āļēāļ§ āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ„āļ§āļēāļĄāđƒāļŠāđ‰āđ„āļ”āđ‰āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ„āļ”āđ‰āļ–āļđāļāļ—āļ”āļŠāļ­āļšāđ€āļžāļ·āđˆāļ­āļĒāļ·āļ™āļĒāļąāļ™āļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģ āđāļĨāļ°āļ–āļđāļāļ•āđ‰āļ­āļ‡āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āļŠāļĢāļļāļ›: āļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡āđ‚āļ”āļĒāļ”āļĩāđ€āļ—āļ„āđ€āļ•āļ­āļĢāđŒāļŠāļ™āļīāļ”āđ‚āļŸāđ‚āļ•āđ‰āđ„āļ”āđ‚āļ­āļ”āļ­āļēāđ€āļĢāļĒāđŒāļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ”āļĩāđƒāļ™āļāļēāļĢāđāļĒāļāđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āđƒāļ™āļžāļ·āļŠāļŠāļāļĨāļļāļŠāļ‡āđ‚āļ„āļ—āļąāđ‰āļ‡ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ āļ„āļģāļŠāļģāļ„āļąāļ: āļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„, āđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™, āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™, āļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡Abstract Objective: To preliminarily quantitate quercetin and quercitrin in mature leaves of Bauhinia species distributed throughout Thailand using RP-HPLC analysis. Methods: Mature leaves of 20 Bauhinia species were collected, cleaned and exhaustively extracted with 95% ethanol using Soxhlet apparatus. The ethanolic extracts were injected to InertsilÂŪ ODS-3 C18 column at 35 šC. The elution solvent was 0.5% phosphoric acid:methanol (1:1) at the flow rate of 1.0 ml/min. Photo-diode array detector was set at 255 nm. Results: The highest yield was found in B. lakhonensis (36.13 g/100 g dried leaves) and the lowest yield in B. variegata (16.06 g/100 g dried leaves). B. acuminata, B. aureifolia, B. galpinii, B. integrifolia, B. lakhonensis, B. malabarica, B, ornata, B. pottsii, B. purpurea, B. scandens, B. siamensis, B. sirindhorniae, B. strychnifolia and B. winitii were found to have both quercetin and quercitrin. The highest contents of quercetin and quercitrin were found in B. malabarica as 191.81 and 373.97 mg/100 g dried leaves, respectively. Quercetin was not found in B. pulla, B. racemosa, B. saccocalyx, and B. tomentosa. Quercitrin was not found in B. bracteata, and B. variegata. The validity of the analysis was in the acceptable range. Conclusion: RP-HPLC with PDA detector performed a good separation and could quantitate quercetin and quercitrin content in selected 20 Bauhinia species distributed throughout Thailand. Keywords: Bauhinia spp., quercetin, quercitrin, RP-HPL

    āļ›āļĢāļīāļĄāļēāļ“āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āđƒāļ™āđƒāļšāļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„ āļ—āļĩāđˆāļžāļšāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđ‚āļ”āļĒāļ§āļīāļ˜āļĩ RP-HPLC RP-HPLC Preliminary Analysis of Quercetin and Quercitrin Contents in Bauhinia spp. Leaves Distributed in Thailand

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āđ€āļžāļ·āđˆāļ­āļŦāļēāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āđƒāļ™āđƒāļšāļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āđ€āļāđ‡āļšāđƒāļšāđ€āļžāļŠāļĨāļēāļ”āļ‚āļ­āļ‡āļžāļ·āļŠāļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„āļ—āļąāđ‰āļ‡ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ āļ™āļģāļĄāļēāļ—āļģāļ„āļ§āļēāļĄāļŠāļ°āļ­āļēāļ” āļ­āļšāđāļŦāđ‰āļ‡ āđāļĨāļ°āļŠāļāļąāļ”āļ”āđ‰āļ§āļĒāđ€āļ­āļ—āļēāļ™āļ­āļĨ (āļĢāđ‰āļ­āļĒāļĨāļ° 95) āđ‚āļ”āļĒāļāļēāļĢāļŠāļāļąāļ”āđāļšāļšāļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡ āđāļĒāļāļŠāļēāļĢāđ‚āļ”āļĒāļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡ āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 35 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ„āļ­āļĨāļąāļĄāļ™āđŒ InersilÂŪ ODS-3 C18 āđ€āļ›āđ‡āļ™āđ€āļŸāļŠāļ„āļ‡āļ—āļĩāđˆ āđāļĨāļ°āđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ‚āļ­āļ‡āļāļĢāļ”āļŸāļ­āļŠāļŸāļ­āļĢāļīāļ (āļĢāđ‰āļ­āļĒāļĨāļ° 0.5) āļāļąāļšāđ€āļĄāļ—āļēāļ™āļ­āļĨ āđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ 1 āļ•āđˆāļ­ 1 āđ€āļ›āđ‡āļ™āđ€āļŸāļŠāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆ āļ•āļĢāļ§āļˆāļ§āļąāļ”āļ›āļĢāļīāļĄāļēāļ“āđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āļ”āđ‰āļ§āļĒāļ”āļĩāđ€āļ—āļ„āđ€āļ•āļ­āļĢāđŒāļŠāļ™āļīāļ”āđ‚āļŸāđ‚āļ•āđ‰āđ„āļ”āđ‚āļ­āļ”āļ­āļēāđ€āļĢāļĒāđŒāļ—āļĩāđˆ 255 āļ™āļēāđ‚āļ™āđ€āļĄāļ•āļĢ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āđ€āļ–āļēāđƒāļŦāđ‰āļ›āļĢāļīāļĄāļēāļ“āļŠāļīāđˆāļ‡āļŠāļāļąāļ”āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” (36.13 āļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡) āđāļĨāļ°āđ€āļŠāļĩāđ‰āļĒāļ§āļ”āļ­āļāļ‚āļēāļ§āđƒāļŦāđ‰āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™ (16.06 āļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡) āļāļēāļŦāļĨāļ‡ āđƒāļšāđ„āļĄāđ‰āļŠāļĩāļ—āļ­āļ‡ āļāļēāļŦāļĨāļ‡āļ”āļ­āļāđāļ”āļ‡ āđ€āļ–āļēāđ„āļŸ āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āđ€āļ–āļē āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§ āļ›āļ­āđ€āļāļĩāđ‹āļĒāļ™ āļŠāļ‡āđ‚āļ„āļ”āļģ āļŠāļ‡āđ‚āļ„ āđ€āļ–āļēāļāļĢāļ°āđ„āļ”āļĨāļīāļ‡ āļŠāļĢāđ‰āļ­āļĒāļŠāļĒāļēāļĄ āļŠāļīāļĢāļīāļ™āļ˜āļĢāļ§āļąāļĨāļĨāļĩ āđ€āļ–āļēāļ‚āļĒāļąāļ™ āđāļĨāļ°āļ„āļīāđ‰āļ§āļ™āļēāļ‡ āļžāļšāļ—āļąāđ‰āļ‡āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™ āļŠāđ‰āļĄāđ€āļŠāļĩāđ‰āļĒāļ§āļžāļšāļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āđ€āļ—āđˆāļēāļāļąāļš 191.81 and 373.97 āļĄāļīāļĨāļĨāļīāļāļĢāļąāļĄāļ•āđˆāļ­ 100 āļāļĢāļąāļĄāđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāđāļŦāđ‰āļ‡ āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™āđ„āļĄāđˆāļžāļšāđƒāļ™āđāļŠāļĨāļ‡āļžāļąāļ™ āļŠāļ‡āđ‚āļ„āļ™āļē āđ€āļŠāļĩāđ‰āļĒāļ§āļ›āđˆāļē āđāļĨāļ°āđ‚āļĒāļ—āļ°āļāļē āļŠāđˆāļ§āļ™āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āđ„āļĄāđˆāļžāļšāđƒāļ™āđāļŠāļĨāļ‡āļžāļąāļ™āđ€āļ–āļē āđāļĨāļ°āđ€āļŠāļĩāđ‰āļĒāļ§āļ”āļ­āļāļ‚āļēāļ§ āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ„āļ§āļēāļĄāđƒāļŠāđ‰āđ„āļ”āđ‰āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ„āļ”āđ‰āļ–āļđāļāļ—āļ”āļŠāļ­āļšāđ€āļžāļ·āđˆāļ­āļĒāļ·āļ™āļĒāļąāļ™āļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģ āđāļĨāļ°āļ–āļđāļāļ•āđ‰āļ­āļ‡āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āļŠāļĢāļļāļ›: āļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡āđ‚āļ”āļĒāļ”āļĩāđ€āļ—āļ„āđ€āļ•āļ­āļĢāđŒāļŠāļ™āļīāļ”āđ‚āļŸāđ‚āļ•āđ‰āđ„āļ”āđ‚āļ­āļ”āļ­āļēāđ€āļĢāļĒāđŒāļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ”āļĩāđƒāļ™āļāļēāļĢāđāļĒāļāđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™ āđāļĨāļ°āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™āđƒāļ™āļžāļ·āļŠāļŠāļāļĨāļļāļŠāļ‡āđ‚āļ„āļ—āļąāđ‰āļ‡ 20 āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ āļ„āļģāļŠāļģāļ„āļąāļ: āļŠāļāļļāļĨāļŠāļ‡āđ‚āļ„, āđ€āļ„āļ§āļ­āļ‹āļĩāļ•āļīāļ™, āđ€āļ„āļ§āļ­āļ‹āļīāļ•āļĢāļīāļ™, āļ§āļīāļ˜āļĩāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡Abstract Objective: To preliminarily quantitate quercetin and quercitrin in mature leaves of Bauhinia species distributed throughout Thailand using RP-HPLC analysis. Methods: Mature leaves of 20 Bauhinia species were collected, cleaned and exhaustively extracted with 95% ethanol using Soxhlet apparatus. The ethanolic extracts were injected to InertsilÂŪ ODS-3 C18 column at 35 šC. The elution solvent was 0.5% phosphoric acid:methanol (1:1) at the flow rate of 1.0 ml/min. Photo-diode array detector was set at 255 nm. Results: The highest yield was found in B. lakhonensis (36.13 g/100 g dried leaves) and the lowest yield in B. variegata (16.06 g/100 g dried leaves). B. acuminata, B. aureifolia, B. galpinii, B. integrifolia, B. lakhonensis, B. malabarica, B, ornata, B. pottsii, B. purpurea, B. scandens, B. siamensis, B. sirindhorniae, B. strychnifolia and B. winitii were found to have both quercetin and quercitrin. The highest contents of quercetin and quercitrin were found in B. malabarica as 191.81 and 373.97 mg/100 g dried leaves, respectively. Quercetin was not found in B. pulla, B. racemosa, B. saccocalyx, and B. tomentosa. Quercitrin was not found in B. bracteata, and B. variegata. The validity of the analysis was in the acceptable range. Conclusion: RP-HPLC with PDA detector performed a good separation and could quantitate quercetin and quercitrin content in selected 20 Bauhinia species distributed throughout Thailand. Keywords: Bauhinia spp., quercetin, quercitrin, RP-HPL

    The effects of Litsea cubeba essential oil inhalation on brainwave activity

    Get PDF
    Litsea cubeba is a dioecious tree found in Asia, including Thailand. It is known for its therapeutic properties in aromatherapy. This study aims to investigate the effect of L. cubeba essential oil on EEG recordings. Sweet almond oil was used as the essential oil diluent. Twenty-five healthy participants aged 20–35 were recruited. First, the participants inhaled sweet almond oil; then, after a 7-day washout period, they inhaled 10% of the essential oil via face mask (2 L/min). Brainwaves were recorded using Nicolet EEG v32 from Natus Neurology Company (USA). The absolute powers of 4 main frequency bands (delta, theta, alpha, and beta waves) were compared during three conditions i.e., resting-state, sweet almond oil inhalation and L. cubeba inhalation. The results indicated that the absolute powers of alpha (8–12.9 Hz) and beta (13–30) activity increased significantly after L. cubeba inhalation. In conclusion, the inhalation of L. cubeba essential oil induced effects on the central nervous system (brainwave activity). L. cubeba essential oil activated both alpha and beta waves, representing calmness and alertness, respectively. This study has demonstrated the effect of L. cubeba essential oil inhalation in complement with well-being and aromatherapeutic applications

    <em>In vitro</em> antidiabetic, antioxidation and cytotoxicity activities of ethanolic extract of <em>Aquilaria crassna</em> leaves and its active compound; mangiferin

    No full text
    144-150Degenerative diseases have been considered as a major public health problem in many countries, thus, findingmedicines to treat these diseases without undesirable side effects is required. This study aimed to investigate the antidiabetic, anti-oxidation and cytotoxicity activities of the ethanolic extract of Aquilaria crassna leaves (ACE) and its active metabolite; mangiferin. The yeast ι-glucosidase inhibitory assay was performed, and the IC50 of ACE and mangiferin were found to be 0.1840¹0.0032 and 0.5714¹0.0044 mg/mL, respectively. In addition, these samples were analyzedin term of the in vitro antioxidant activities using standard antioxidant assays. The results showed that ACE and mangiferin do possess anti-oxidant properties. Moreover, the cytotoxicity of ACE and mangiferin was also evaluated against three human cancer cell lines using MTT assay. The ACE could inhibit cell viability of MDA-MB-231; breast cancer cells (IC50 = 33.89¹0.50 Ξg/mL) greater than HT-29; colorectal cancer cells (IC50= 51.74¹1.42 Ξg/mL) and HepG2; hepatic cancer cells (IC50 = 53.63¹1.54 Ξg/mL) Mangiferin could also reduce the viability of these three cell lines, but the IC50 was greater than 100 Ξg/mL. In conclusion, our findings may provide some evidence for understanding the indigenous use of A. crassna leaves

    Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    No full text
    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast Îą-glucosidase and rat intestinal Îą-glucosidase were determined using 1 mM of p-nitrophenyl-Îą-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic Îą-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-Îą-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast Îą-glucosidase with the IC 50 of 0.0503 and 0.5813 mg/ml, respectively, against rat Îą-glucosidase with the IC 50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC 50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at â‰Ĩ200 Ξg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro

    Pharmacognostic evaluation with reference to catechin content and antioxidant activities of pale catechu in Thailand

    No full text
    Pale catechu, a well-known crude drug, has been widely used for anti-diarrhea. Due to its medicinal usage, this study was performed to evaluate the pharmacognostic and antioxidant properties as well as catechins contents of pale catechu in Thailand. Twenty samples of pale catechu collected from traditional drug stores throughout Thailand were investigated. Antioxidant activities, total phenolic, nontannin phenolic, and total tannin contents were evaluated. (+)-catechin and (−)-epicatechin were quantitatively analyzed by high performance liquid chromatography. The results revealed that most of pale catechu samples were adulterated according to high ash values. Qualified pale catechu in Thailand were demonstrated for their average contents of total ash, acid insoluble ash, loss on drying, and moisture as 5.20 ± 0.19, 1.61 ± 0.17, 13.14 ± 0.10, and 13.20 ± 1.07 g/100 g of dry weight, respectively. The ethanol and water soluble extractive matters were 91.66 ± 5.16 and 44.59 ± 3.18 g/100 g of dry weight respectively. (+)-catechin in theses samples was 478.87 ± 2.77 ξg/mg of crude drug, whereas (−)- epicatechin was found to be trace (< limit of quantitation). The promising antioxidant activities were demonstrated compared to (+)- catechin hydrate
    • â€Ķ
    corecore