60 research outputs found

    The patterns and implications of diurnal variations in the d-excess of plant water, shallow soil water and air moisture

    Get PDF
    Deuterium excess (d-excess) of air moisture is traditionally considered a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However, direct field observations supporting the role of vegetation in d-excess variations are not well documented. In this study, we quantified the d-excess of air moisture, shallow soil water (5 and 10 cm) and plant water (leaf, root and xylem) of multiple dominant species at hourly intervals during three extensive field campaigns at two climatically different locations within the Heihe River basin, northwestern China. The ecosystems at the two locations range from forest to desert. The results showed that with the increase in temperature (T) and the decrease in relative humidity (RH), the δD–δ18O regression lines of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values between different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values were found in leaf water (−85.6‰). The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after a rain event, showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found opposite diurnal variations for dleaf and dmoisture during the sunny days, and for dsoil and dmoisture during the first sunny day after the rain event. The steady-state Craig–Gordon model captured the diurnal variations in dleaf, with small discrepancies in the magnitude. Overall, this study provides a comprehensive and high-resolution data set of d-excess of air moisture, leaf, root, xylem and soil water. Our results provide direct evidence that dmoisture of the surface air at continental locations can be significantly altered by local processes, especially plant transpiration during sunny days. The influence of shallow soil water on dmoisture is generally much smaller compared with that of plant transpiration, but the influence could be large on a sunny day right after rainfall events

    The effects of short-term rainfall variability on leaf isotopic traits of desert plants in sand-binding ecosystems

    Get PDF
    Author's manuscript made available in accordance with the publisher's policy.Sand-binding vegetation is effective in stabilizing sand dunes and reducing soil erosion, thus helps minimize the detrimental effects of desertification. The aim of this study is to better understand the relationships between water and nutrient usage of sand-binding species, and the effects of succession and rainfall variability on plants’ water–nutrient interactions. We examined the effects of long-term succession (50 years), inter-annual rainfall variability (from 65% of the mean annual precipitation in 2004 to 42% in 2005) and seasonality on water–nutrient interactions of three major sand-binding species (Artemisia ordosica, Hedysarum scoparium and Caragana korshinskii) by measuring foliar δ13C, δ15N and [N]. Long-term succession in general did not significantly alter δ13C, δ15N and [N] of the three species. Short-term rainfall variability, however, significantly increased foliar δ13C levels of all three species by 1.0–1.8‰ during the severely dry year. No significant seasonal patterns were found in foliar δ13C and δ15N values of the three species, whereas foliar [N] varied by season. For the two leguminous shrubs, the correlations between δ13C and δ15N were positive in both sampling years, and the positive correlation between [N] and δ13C was only found in the severely dry year. The results indicate that these sand-binding plants have developed into a relatively stable stage and they are able to regulate their nitrogen and water use in responding to environmental conditions, which reinforces the effectiveness of plantation of native shrubs without irrigation in degraded areas. However, the results also indicate that short-term climate variability could have severe impact on the vegetation functions

    A hybrid genetic algorithm for the vehicle routing problem with three-dimensional loading constraints

    No full text
    This paper addresses a Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP) which combines a three-dimensional loading problem and vehicle routing problem in distribution logistics. The problem requires the combinatorial optimization of a feasible loading solution and a successive routing of vehicles to satisfy client demands, where all vehicles must start and terminate at a central depot. In spite of its clear practical significance in the real world of distribution management, 3L-CVRP in literature is very limited for its high combinatorial complexity. We solve this problem by a hybrid approach which combines Genetic Algorithm and Tabu Search (GATS). Genetic algorithm is developed for vehicle routing and tabu search for three-dimensional loading, while these two algorithms are integrated for the combinatorial problem. We computationally evaluate this hybrid genetic algorithm on all publicly available test instances, and obtain new best solutions for several instances

    Solitary Wave Solutions to Approximate Fully Nonlinear Double sine-Gordon Equation

    No full text
    Abstract: By using ansatz method to solve the approximate fully nonlinear double sine-Gordon equation, some exact traveling wave solutions (compacton, peakon) can be derived. Especially a type of discontinuous solution to approximate fully nonlinear double sine-Gordon equation (AFNDSG) is obtained. The noncontinuous solitary wave solutions are verified by applying conservation law theory

    Learning Invariant Inter-pixel Correlations for Superpixel Generation

    No full text
    Deep superpixel algorithms have made remarkable strides by substituting hand-crafted features with learnable ones. Nevertheless, we observe that existing deep superpixel methods, serving as mid-level representation operations, remain sensitive to the statistical properties (e.g., color distribution, high-level semantics) embedded within the training dataset. Consequently, learnable features exhibit constrained discriminative capability, resulting in unsatisfactory pixel grouping performance, particularly in untrainable application scenarios. To address this issue, we propose the Content Disentangle Superpixel (CDS) algorithm to selectively separate the invariant inter-pixel correlations and statistical properties, i.e., style noise. Specifically, We first construct auxiliary modalities that are homologous to the original RGB image but have substantial stylistic variations. Then, driven by mutual information, we propose the local-grid correlation alignment across modalities to reduce the distribution discrepancy of adaptively selected features and learn invariant inter-pixel correlations. Afterwards, we perform global-style mutual information minimization to enforce the separation of invariant content and train data styles. The experimental results on four benchmark datasets demonstrate the superiority of our approach to existing state-of-the-art methods, regarding boundary adherence, generalization, and efficiency. Code and pre-trained model are available at https://github.com/rookiie/CDSpixel

    New tension mechanism for high-Speed tensile testing machine

    No full text
    International audienceAs concerns of dynamic tensile measuring, a new tension mechanism driven by liner motor in High-Speed Tensile Testing Machine is presented. It satisfies the requirements for testing the dynamic tensile properties of plastic materials with strain rates from 1 to 100s-1. For this purpose the idle stroke principle is used to realize the dynamic load of plastic material with static grip. Computer Aided Engineering technology is used: i).to analyze and optimize the tension mechanism thus allowing reducing the system shock caused by collisions. ii). to avoid the influence of plastic materials specimen stress and strain uniformity on the measuring system. The analysis results agreed well with the established empirical relationships based on experimental evidence. Two sets of experiments for different strain rate tensile were conducted thus allowing proving the reliability and credibility of the designed tension mechanism

    HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing <i>Xenopus</i> Tectum

    No full text
    <div><p>In the developing central nervous system (CNS), progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs) are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC) activity on the proliferation of RGs in the visual optic tectum of <i>Xenopus laevis</i>. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP), a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA) or Valproic acid (VPA) decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO) decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12). The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of <i>Xenopus laevis</i>.</p></div

    Sulfonated reduced graphene oxide modification layers to improve monovalent anions selectivity and controllable resistance of anion exchange membrane

    No full text
    Graphene oxide with lamellar structure has attracted research interest in various fields. In this study, sulfonated reduced graphene oxide (S-rGO) nanosheets with negatively charged sulfonic acid groups were synthesized via a facile distillation-precipitation polymerization, followed by hydrazine reduction. The sulfanilic acid was grafted on the graphene oxide sheets to separate GO nanosheets each other and provide anion channels for anions selectivity. These nanosheets were used to modify anion exchange membranes (AEMs), and to enhance the membrane monovalent anions selectivity and the modification layer conductivity, in order to meet industrial requirements. The permselectivity and separation efficiency were used to evaluate selectivities of the modified membranes. The results show that the unmodified AEM has no monovalent selectivity, while the permselectivity and separation efficiency of S-rGO modified AEMs (reduced by hydrazine hydrate steam in 10 min) increases from 0.65 to 1.80 and from -0.13 to 0.31 (in 40 min), respectively; and from 0.72 to 2.30 and from -0.07 to 0.28 (in 80 min), respectively

    HDAC inhibitors block the proliferative rate of radial glia cells.

    No full text
    <p>(A). Representative co-staining images showing the BrdU- and BLBP-positive cells in control (A1–A3), TSA-treated (50 nM, A4–A6) and VPA-treated (1 mM, A7–A9) tecta. The BLBP-positive cell bodies reside along the midline of the ventricular layer of the tectum (arrows) with endfeet on the edge of neuropil (arrow heads). The control tectum was outlined with a white dotted line (A3), which was put on TSA- (A6) or VPA-treated (A9) tectum. The TSA- (A6) or VPA-treated (A9) tectum was outlined with a solid line, which is smaller than control tectum (A3). Scale: 50 μm. (B-C) Quantification data showing that the number of BrdU- and BLBP-positive cells were significantly decreased in TSA- or VPA-treated tecta compared to the control. (BrdU: Ctrl, 163.2 ± 7.9, N = 5, TSA, 119.4 ± 9.3, N = 5, VPA, 136.0 ± 5.7, N = 3; BLBP: Ctrl, 179.2 ± 7.2, N = 5, TSA, 137.0 ± 12.2, N = 5, VPA, 109.7 ± 3.5, N = 3; *p<0.05, **p<0.01). (D). Most of BrdU-labeling cells are colocalized to BLBP-positive cells (Control: 82.3% ± 1.2%, N = 5, TSA: 81.4% ± 1.1%, N = 3, VPA: 77.3% ± 3.4%, N = 3).</p
    • …
    corecore