8 research outputs found
Apelin promotes lymphangiogenesis and lymph node metastasis
International audienc
Subtype-specific KRAS mutations in advanced lung adenocarcinoma: A retrospective study of patients treated with platinum-based chemotherapy
Background: Platinum-based chemotherapy is the most common treatment in advanced-stage lung adenocarcinoma. Because the clinical significance of KRAS mutational status in this setting has not yet been clearly determined, a mutation subtype-specific analysis was performed in the so far largest cohort of Caucasian patients with KRAS mutant advanced-stage lung adenocarcinoma treated with platinum-based chemotherapy. Methods: 505 Caucasian stage III-IV lung adenocarcinoma patients with known amino acid substitution-specific KRAS mutational status and treated with platinum-based chemotherapy were included. The correlations of subtype-specific KRAS mutations with smoking status, progression-free and overall survival (PFS and OS, respectively) and therapeutic response were analysed. Results: Among 338 KRAS wild-type, 147 codon 12 mutant and 20 codon 13 mutant patients, there were no mutation-related significant differences in PFS or OS (P values were 0.534 and 0.917, respectively). Eastern Cooperative Oncology Group (ECOG) status and clinical stage were significant independent prognostic factors. KRAS mutation showed a significant correlation with smoking status (P = 0.018). Importantly, however, G12V KRAS mutant patients were significantly more frequent among never-smokers than all other codon 12 KRAS mutant (G12x) subtypes (P = 0.016). Furthermore, this subgroup tended to have a higher response rate (66% versus 47%; P = 0.077). A modestly longer median PFS was also found in the G12V mutant cohort (233 days; versus 175 days in the G12x group; P = 0.145). Conclusions: While KRAS mutation status per se is neither prognostic nor predictive in stage III-IV lung adenocarcinoma, subtype-specific analysis may indeed identify clinically relevant subgroups of patients that may ultimately influence treatment decisions. © 2014 The Authors
Discrimination of clinical stages in non-small cell lung cancer patients by serum HSP27 and HSP70: A multi-institutional case–control study
AbstractIntroductionLung cancer represents a major healthcare problem. Accordingly, there is an urgent need to identify serum biomarkers for early diagnosis of lung pathology. We have recently described that patients with manifest COPD evidence elevated levels of heat shock proteins (HSPs). Based on these data, we speculated whether HSPs are also increased in patients with diagnosed lung cancer.MethodsSerum levels of HSP27, phospho-HSP27 (pHSP27) and HSP70 in patients with non-small cell lung cancer (NSCLC) diagnosed at an early (stages I–II, n=37) or advanced (stages IIIA–IV, n=72) stage were determined by using ELISA. Healthy smokers (n=24), healthy never-smoker volunteers (n=33) and COPD patients (n=34) according to GOLD classification served as control population.ResultsSerum levels of HSP27 were elevated in patients with NSCLC diagnosed at an early or advanced stage when compared with both healthy control groups (P<0.005 and P<0.0001 respectively). Statistically significant differences were furthermore found between the groups of patients with early vs. advanced stage NSCLC (P=0.0021). Serum levels of HSP70 were also significantly elevated in patients with NSCLC diagnosed at an early or at an advanced stage when compared with either healthy control groups (P=0.0028 and P<0.0001 respectively). In univariate logistic regression models including healthy subjects and patients with NSCLC, HSP70 had an area under the curve (AUC) of 0.779 (P<0.0001) and HSP27 showed an AUC of 0.870 (P<0.0001).ConclusionOur data suggest that serum HSP27 levels might serve as a possible tool to discriminate between early and advanced stages NSCLC
Distinct Epidemiology and Clinical Consequence of Classic Versus Rare EGFR Mutations in Lung Adenocarcinoma
IntroductionAlthough classic sensitizing mutations of epidermal growth factor receptor (EGFR) are positive predictive markers for EGFR tyrosine kinase inhibitors (TKIs) in lung adenocarcinoma, there are rare EGFR mutations with unknown epidemiology and influence on prognosis and TKI response.MethodsEight hundred and fourteen lung adenocarcinoma patients with KRAS and/or EGFR mutation analyses for TKI therapy indication were identified. Six hundred and forty-five patients were included in the epidemiological analysis. The clinical outcome was analyzed in 419 advanced-stage patients with follow-up data.ResultsFour hundred and eighty (59%) KRAS/EGFR double wild-type, 216 (27%) KRAS mutant, 42 (5%) classic, 49 (6%) rare, and 27 (3%) synonymous EGFR mutant cases were identified. Twenty previously unpublished non-synonymous mutations were found. Rare EGFR mutations were significantly associated with smoking (vs. classic EGFR mutations; p = 0.0062). Classic EGFR mutations but not rare ones were independent predictors of increased overall survival (hazard ratios, 0.45; 95% confidence intervals, 0.25–0.82; p = 0.009). TKI therapy response rate of patients harboring classic EGFR mutations was significantly higher (vs. rare EGFR mutations; 71% vs. 37%; p = 0.039). Patients with classic or sensitizing rare (G719x and L861Q) EGFR mutations had significantly longer progression-free survival when compared with the remaining rare mutation cases (12 vs. 6.2 months; p = 0.048).ConclusionsThe majority of rare EGFR mutations was associated with smoking, shorter overall survival, and decreased TKI response when compared with classic EGFR mutations. However, studies characterizing the TKI sensitizing effect of individual rare mutations are indispensable to prevent the exclusion of patients with sensitizing rare EGFR mutations who may benefit from anti-EGFR therapy
Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer
Background: No targeted drugs are currently available against small cell lung cancer (SCLC). BCL-2 family members are involved in apoptosis regulation and represent therapeutic targets in many malignancies. Methods: Expression of BCL-2 family members in 27 SCLC cell lines representing all known four SCLC molecular subtypes was assessed by qPCR, Western blot and mass spectrometry-based proteomics. BCL-2 and MCL-1 inhibition (venetoclax and S63845, respectively) was assessed by MTT assay and flow cytometry and in mice bearing human SCLC tumours. Drug interactions were calculated using the Combenefit software. Ectopic BAX overexpression was achieved by expression plasmids. Results: The highest BCL-2 expression levels were detected in ASCL1- and POU2F3-driven SCLC cells. Although sensitivity to venetoclax was reflected by BCL-2 levels, not all cell lines responded consistently despite their high BCL-2 expression. MCL-1 overexpression and low BAX levels were both characteristic for venetoclax resistance in SCLC, whereas the expression of other BCL-2 family members did not affect therapeutic efficacy. Combination of venetoclax and S63845 resulted in significant, synergistic in vitro and in vivo anti-tumour activity and apoptosis induction in double-resistant cells; however, this was seen only in a subset with detectable BAX. In non-responding cells, ectopic BAX overexpression sensitised to venetoclax and S63845 and, furthermore, induced synergistic drug interaction. Conclusions: The current study reveals the subtype specificity of BCL-2 expression and sheds light on the mechanism of venetoclax resistance in SCLC. Additionally, we provide preclinical evidence that combined BCL-2 and MCL-1 targeting is an effective approach to overcome venetoclax resistance in high BCL-2-expressing SCLCs with intact BAX