7 research outputs found

    Long-range focusing of magnetic bound states in superconducting lanthanum

    Get PDF
    Quantum mechanical systems with long-range interactions between quasiparticles provide a promising platform for coherent quantum information technology. Superconductors are a natural choice for solid-state based quantum devices, while magnetic impurities inside superconductors give rise to quasiparticle excitations of broken Cooper pairs that provide characteristic information about the host superconductor. Here, we reveal that magnetic impurities embedded below a superconducting La(0001) surface interact via quasiparticles extending to very large distances, up to several tens of nanometers. Using low-temperature scanning probe techniques, we observe the corresponding anisotropic and giant oscillations in the LDOS. Theoretical calculations indicate that the quasi-two-dimensional surface states with their strongly anisotropic Fermi surface play a crucial role for the focusing and long-range extension of the magnetic bound states. The quasiparticle focusing mechanism should facilitate the design of versatile magnetic structures with tunable and directed magnetic interactions over large distances, thereby paving the way toward the design of low-dimensional magnet-superconductor hybrid systems exhibiting topologically non-trivial quantum states as possible elements of quantum computation schemes based on Majorana quasi particles

    Breaking through the Mermin-Wagner limit in 2D van der Waals magnets

    Get PDF
    The Mermin-Wagner theorem states that long-range magnetic order does not exist in one- or two-dimensional (2D) isotropic magnets with short-ranged interactions. The theorem has been a milestone in magnetism and has been driving the research of recently discovered 2D van der Waals (vdW) magnetic materials from fundamentals up to potential applications. In such systems, the existence of magnetic ordering is typically attributed to the presence of a significant magnetic anisotropy, which is known to introduce a spin-wave gap and circumvent the core assumption of the theorem. Here we show that in finite-size 2D vdW magnets typically found in lab setups (e.g., within millimetres), short-range interactions can be large enough to allow the stabilisation of magnetic order at finite temperatures without any magnetic anisotropy for practical implementations. We demonstrate that magnetic ordering can be created in flakes of 2D materials independent of the lattice symmetry due to the intrinsic nature of the spin exchange interactions and finite-size effects in two-dimensions. Surprisingly we find that the crossover temperature, where the intrinsic magnetisation changes from superparamagnetic to a completely disordered paramagnetic regime, is weakly dependent on the system length, requiring giant sizes (e.g., of the order of the observable universe ~1026^{26} m) in order to observe the vanishing of the magnetic order at cryogenic temperatures as expected from the Mermin-Wagner theorem. Our findings indicate exchange interactions as the main driving force behind the stabilisation of short-range order in 2D magnetism and broaden the horizons of possibilities for exploration of compounds with low anisotropy at an atomically thin level

    Identification of hypertensive patients with dominant affective temperaments might improve the psychopathological and cardiovascular risk stratification: a pilot, case-control study.

    Get PDF
    BACKGROUND: Although mood disorders and cardiovascular diseases have widely studied psychosomatic connections, data concerning the influence of the psychopathologically important affective temperaments in hypertension are scarce. To define a possibly higher cardiovascular risk subpopulation we investigated in well-treated hypertensive patients with dominant affective temperaments (DOM) and in well-treated hypertensive patients without dominant temperaments the level of depression and anxiety, arterial stiffness and serum Brain-derived Neurotrophic Factor (seBDNF). METHODS: 175 hypertensive patients, free of the history of psychiatric diseases, completed the TEMPS-A, Beck Depression Inventory and Hamilton Anxiety Scale questionnaires in two primary care practices. Of those 175 patients, 24 DOM patients and 24 hypertensive controls (matched in age, sex and the presence of diabetes) were selected for measurements of arterial stiffness and seBDNF level. RESULTS: Beck and Hamilton scores in DOM patients were higher compared with controls. Pulse wave velocity and augmentation index did not differ between the groups while in the DOM patients decreased brachial systolic and diastolic and central diastolic blood pressures were found compared with controls. SeBDNF was lower in the DOM group than in the controls (22.4 +/- 7.2 vs. 27.3 +/- 7.8 ng/mL, p < 0.05). CONCLUSIONS: Although similar arterial stiffness parameters were found in DOM patients, their increased depression and anxiety scores, the decreased brachial and central diastolic blood pressures as well as the decreased seBDNF might refer to their higher vulnerability regarding the development not only of major mood disorders, but also of cardiovascular complications. These data suggest that the evaluation of affective temperaments should get more attention both with regard to psychopathology and cardiovascular health management

    Non-Collinear Magnetic Configurations at Finite Temperature in Thin Films

    No full text

    Photo-induced changes and contact relaxation of the surface AC-conductivity of the paper prepared from poly(ethyleneimine)-TiO2-anthocyanin modified cellulose fibers

    No full text
    Poly(ethyleneimine)-TiO2-anthocyanin modified cellulose fiber sheets were prepared as a support material for dye-sensitized solar cells. The study is focused on the effects of different anthocyanins on the photo-induced changes and contact relaxation of the surface AC-conductivity of the papers. The anthocyanins were extracted from purple cabbage, beet-root, plum peel, red vine and red currant juice. The results showed that there were pronounced contact relaxation effects at the interfaces between alumina electrode and the papers, which were further affected by the presence of anthocyanins. The electrode effects are mainly manifested by a decrease in conductance, which falls by about 30 % from its initial value about 400 min after the beginning of the experiment carried out in the dark. The illumination of the samples induces an increase in the magnitude of the observed changes in conductance but does not affect the nature of the relaxation processes. By estimating the temperature coefficients of conductivity of the papers and the changes in temperature during the illumination of the samples, we succeeded to separate the effects of heating from the total effects of illumination on the conductance and susceptance of the papers

    Kynurenines in the CNS: recent advances and new questions

    No full text
    corecore