46 research outputs found

    DFT Study of Oxidation States on Pyrite Surface Sites

    Get PDF

    Effect of temperature and substitution on cope rearrangement : A symmetry perspective

    Get PDF
    Many reactions feature symmetry variation along the reaction path on the potential energy surface. The interconversion of the point group symmetry of the stationary points can be characteristic of these processes. Increasing the temperature, however, leads to the loss of symmetry in its traditional yes-no language. We find that in such cases the instantaneous distance of the molecular structure from its symmetric counterpart is a suitable collective variable that can describe the reaction process. We show that this quantity, the continuous symmetry measure (CSM) has a positive linear relationship with temperature, implying that even highly symmetric molecules should be considered as asymmetric above 0K. Using ab initio molecular dynamics we simulate the temperature induced Cope rearrangements of several fluxional molecules and employ different CSM-s to follow the reaction progress. We use this methodology to demonstrate the validity of important concepts governing these reactions: Woodward-Hoffmann rules and TS aromaticity. Statistical analysis of the CSM distributions reveals that ligands connected to the carbon frame have profound effect on the reaction course. In particular our results show that lower temperatures tend to enhance the differences between the TS-stabilizing effect of the substituents

    Pyrite in contact with supercritical water: the desolation of steam

    Get PDF
    The supercritical water and pyrite interface has been studied by DFT calculations. A surprisingly dry surface has been found which points to a new reactivity under extreme conditions which has relevance in the iron–sulfur world prebiotic chemistry of the early Earth.</p

    Probing Spin-Vibronic Dynamics Using Femtosecond X-ray Spectroscopy

    Get PDF
    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the devel- opment of X-ray Free Electrons Lasers (X-FELs) and are opening new opportunities for direct probing the correlated evolution of the nuclei, the electronic and spin degrees of freedom on the femtosecond timescale. In this contribution we use excited state wavepacket dynamics of the photoexcited decay of a new Fe(II) complex, [Fe(bmip)2]2+ (bmip=2,6-bis(3-methyl-imidazole- 1-ylidine)pyridine), to simulate the experimental observables associated with femtosecond Fe K- edge X-ray absorption near-edge structure (XANES) and X-ray emission (XES) spectra. We show how the evolution of the nuclear wavepacket is translated into the experimental observable and the sensitivity of these approaches for following excited state dynamics
    corecore