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Abstract

We study strong field molecular ionization, with a focus on indirect ionization to dissociative

excited ionic states. Indirect ionization, also known as post-ionization excitation, refers to the

excitation of the molecular cation following ionization to a lower lying state. We propose two

possible mechanisms underlying indirect ionization – resonant transitions facilitated by nuclear

dynamics and non-adiabatic transitions driven by the laser field off resonance. We compare them

by measuring the dependence of the indirect ionization yield on pulse duration for cations with

different electronic structures. Both experiments and simulations confirm the importance of nuclear

dynamics in indirect ionization and indicate the presence of off-resonant non-adiabatic transitions.
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I. INTRODUCTION

Strong field ionization (SFI) has been of significant interest since it provides access to

attosecond electron dynamics via high harmonic generation and allows for direct probing of

excited state molecular dynamics on ultrafast timescales [1–4]. While most work considers

ionization to the ground state of the molecular cation, there have also been several obser-

vations of ionization to excited ionic states in SFI [5–15]. In this work, we consider two

mechanisms underlying ionization to excited states, and compare their relative importance

in different parameter regimes.

In a recent work [12], we demonstrated that there are two pathways to populate an excited

ionic state - (1) Direct ionization, in which the neutral molecule is directly ionized to an

excited ionic state, corresponding to the removal of an inner orbital electron; (2) Indirect

ionization (also known as post-ionization excitation), in which the molecule is first ionized

to the ground (or a low-lying) ionic state and then excited by the field to a high-lying state.

If the initial ionic state is non-dissociative while the final state is dissociative, then these two

pathways can be separated by coincidence measurements. In coincidence measurements, a

photoelectron is detected together with its partner photoion. At the moment of ionization,

an electron is liberated with the amount of kinetic energy (KE) given by

KE = nh̄ω − Ii
S − U (1)

where n is the number of photons absorbed, Ii
S is the Stark shifted ionization potential to the

ith excited state, and U is the ponderomotive potential. Given this, we can infer the state

of the ion by measuring the photoelectron kinetic energy. However, after ionization, the ion

is still subject to the laser field and can potentially undergo transitions between different

states. For instance, it can be promoted to a dissociative state and produce fragments.

Therefore, ion detection, together with knowledge of the fragmentation channels, provides

us with information on the final ionic state.

We consider two mechanisms that can drive indirect ionization, illustrated by the cartoons

in Figure 1. The first one is a resonant transition between electronic states of the cation

driven by the laser and facilitated by nuclear dynamics. Panel (a) of Figure 1 illustrates

such a situation: the molecule is first ionized to the ground ionic state D0 at the Franck-

Condon point (FC), then as the wave packet evolves along the potential surface, it reaches

a one-photon resonance where it’s excited to an upper state DN. Since it usually involves

2



FIG. 1. Cartoon illustration of two possible indirect ionization mechanism: (a) nuclear dynamics

induced resonant transition. After ionization, the nuclear wavepacket starts evolving along the

potential curve away from the Franck-Condon (FC) point toward the minimum of the potential

(MIN). A transition to a high-lying ionic states can occur if a resonance condition is met. (b)

Non-adiabatic transition. After tunnel ionization near the peak of the field, a non-adiabatic shut

off of the laser field induces a “hopping” between two dressed states. This is most likely to happen

when the laser field crosses zero. Note the x-axes in two panels are different.

nuclear motion (which takes some time) to reach a resonance, we expect this mechanism to

be sensitive to pulse duration.

The second mechanism is via an off-resonance non-adiabatic transition induced by the

laser field (in contrast to non-adiabaticity resulting from the breakdown of the Born-

Oppenheimer approximation) [16]. We call the eigenstates of the field-free Hamiltonian
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the bare (diabatic) states, denoted by DN,N = 0, 1, 2..., and those of the total Hamiltonian

(molecule + field) dressed (adiabatic) states, denoted by D′N,N = 0, 1, 2.... We discuss this

mechanism in the dressed basis since we expect it to be important when the field is strong

and the bare states do not provide a good description of the instantaneous eigenstates in

the field. This expectation is confirmed by the derivations given below.

Panel (b) of Figure 1 shows a simple case of tunnel ionization at the peak of a laser pulse,

leaving the cation in the lowest dressed ionic state D′0. We assume the tunneling takes places

instantaneously since we are only concerned with what happens afterwards. This dressed

state can be expressed as a linear combination of bare eigenstates, D′0 = aD0 + bDN, |a|2 +

|b|2 = 1. If the field were turned off very slowly, then this state would evolve adiabatically

to the ground state of the bare Hamiltonian, D0. However, if the field turns off so rapidly

that there is no time for any population transfer (sudden approximation), then the molecule

is projected onto the bare states such that we find a probability of |a|2 being in D0 and |b|2

in D1 after the pulse. Generally speaking, as the field varies in time, the diagonalization

of the total Hamiltonian is time-dependent and its eigenvectors experience a rotation in

the Hilbert space. This rotation introduces a coupling among the dressed states, since the

time derivative of one state has a non-zero projection onto other states. The faster the field

varies, and the smaller the energy gaps among the dressed states are, the larger the rate of

non-adiabatic transitions. These non-adiabatic transitions manifest themselves as indirect

ionization, since they take place after the initial ionization, but still in the presence of the

laser field.

In order to illustrate the differences between these two mechanisms, we consider the time-

dependent Schrödinger equation (TDSE) for a two-level system coupled to an external field

via dipole coupling. In the bare basis, i.e., field-free basis, and assuming constant potential

energies Ea and Eb (i.e. fixed nuclei), the TDSE can be written in the matrix form as

ih̄
d

dt

a(t)e−iωat

b(t)e−iωbt

 =

 Ea V (t)

V (t)∗ Eb

a(t)e−iωat

b(t)e−iωbt

 (2)

where Ea = h̄ωa, Eb = h̄ωb and |a(t)|2 + |b(t)|2 = 1. We assume the field is near resonance

(small detuning, ∆ = ω−(ωb−ωa) << ω), and ignore the matrix elements related to the nu-

clear kinetic energy. For simplicity, we also assume a real coupling V (t) = −µε(t) cos(ωt) =

V (t)∗, where µ is the transition dipole moment, ε(t) is the pulse envelope and ω is the carrier
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frequency. Under these conditions we can apply the rotating wave approximation (RWA) to

Eq. 2 and arrive at ȧ(t) = iχ(t)
2
e+i∆tb(t)

ḃ(t) = iχ(t)
2
e−i∆ta(t)

(3)

where χ(t) = µε(t)/h̄ is the Rabi frequency. The coupling consists of an amplitude (∼ χ(t))

and a phase (∼ ∆t). It’s instructive to look at the perturbative behavior of Equation 3

when the transition probability is small, that is, assuming a(t) ≈ 1 for all 0 ≤ t ≤ t0.

b(t0) ≈ i

2

∫ t=t0

0

χ(t)e−i∆tdt (4)

We note that if ∆ is small, then only a moderate χ(t) is needed to produce significant

population transfer since population can build up coherently over time, adding in phase for

a time equal to 1/∆. While equation 4 is a perturbative result, one can solve Equation 3

analytically to obtain Rabi oscillations. With an initial condition |a(0)|2 = 1 and |b(0)|2 = 0,

we get: |a(t)|2 = (∆
Ω

)2 + ( χ
Ω

)2 cos2(Ωt
2

)

|b(t)|2 = ( χ
Ω

)2 sin2(Ωt
2

)
(5)

We see that the population cycles between two states at the frequency of Ω/4, where Ω =√
χ2 + ∆2. In the case of ∆ = 0, Ω = χ and a pulse of duration t = π/χ, all population

is transferred from one state to the other. Such a pulse is termed a π-pulse. Even though

nuclear dynamics are not included in the derivation here and we have assumed constant Ea

and Eb, some nuclear motion is generally required in order to reach a resonance condition.

In other words, ∆ generally depends on time indirectly via nuclear dynamics.

The above solution is derived in the limit of moderate Rabi frequency and small detuning.

Now we consider the case of non-adiabatic transitions, which take place in the limit of large

Rabi frequency. Note that there is no constraint on the detuning here, and hence no RWA.

Since the field is strong and the Stark shifts are significant, it’s better to work in the dressed

state basis. Let U(t) be the unitary transformation that diagonalizes the instantaneous

Hamiltonian H(t):

U−1(t)H(t)U(t) = D(t) =

E ′a 0

0 E ′b

 (6)
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Ψ′ = U−1Ψ =

a′(t)e−iω′
at

b′(t)e−iω
′
bt

 (7)

The explicit definition of U is given in Appendix A. We have used a prime to label the

equivalent dressed state quantities. The TDSE simplifies to:ȧ
′(t) = + θ̇

2
e+iEt/h̄ b′(t)

ḃ′(t) = − θ̇
2
e−iEt/h̄ a′(t)

(8)

θ̇ =
2V̇ E

4V 2 + E2
, E = Ea − Eb (9)

As above, we examine the perturbative limit corresponding to a′(t) ≈ 1:

b′(t0) ≈ −1

2

∫ t=t0

0

θ̇e−iEt/h̄dt (10)

Despite the structural similarities between Equations 4 and 10 (or Equation 3 and 8 ), they

have different physical interpretations. The phase of the coupling (∼ Et/h̄ = (ωa−ωb)t) now

depends on the energy gap between the two bare states, and the amplitude of the coupling

(∼ θ̇) depends on the molecule and laser field parameters in a more complicated manner. We

note the following: (1) the coupling between states is proportional to the time derivative of

the molecule-field coupling, V(t) - i.e., non-adiabaticity is important for strong fields which

vary rapidly. The coupling amplitude is maximum when the instantaneous field crosses

zero. However, note that due to the phase term, the population change is not necessarily

maximal at zero field. In fact, at zero field, the population in one state could be increasing

or decreasing, depending on whether the relative phase is constructive or destructive (this is

illustrated below in Figure 6 ). (2) The energy difference between the states influences both

the coupling amplitude and the phase evolution. For an energy gap E much larger than V ,

this coupling amplitude is suppressed as 1/E. A smaller energy gap minimizes the phase

evolution, and hence there is more constructive interference and population transfer. (3)

The detuning ∆ no longer plays a significant role - hence this mechanism doesn’t require a

resonance condition which usually involves nuclear dynamics. (4) Population transfer now

takes place on a sub-cycle timescale, since V̇ contains the carrier frequency.

We’ve used the bare state representation to solve the TDSE in the case of resonant

transition, and the dressed state representation in the case of non-adiabatic transition. This
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gives us a similar set of solutions (4 and 10) for easy comparison. In addition, it suggests

that the two mechanisms are important in different coupling regimes – resonant transition

requires a small detuning but can otherwise occur with a moderate Rabi frequency, while

non-adiabatic transitions require a large Rabi frequency.

Now a natural question arises since these two seemingly different mechanisms originate

from the same coupling term in the Hamiltonian - are they really separate effects, or different

manifestations of the same effect? In order to answer this question, we go back to the TDSE

in the dressed state basis, applying Eq. 6 and 7 to ih̄ ∂
∂t

Ψ(t) = H(t)Ψ(t):

ih̄
∂

∂t
Ψ′(t) = D(t)Ψ′(t)− ih̄U−1(t)

∂U(t)

∂t
Ψ′(t) (11)

Since D(t) is diagonal, the second term is the only coupling among states. When U−1 ∂U
∂t

is small, we can neglect this term, which is equivalent to the adiabatic approximation, that

is, all population remains in the same adiabatic (dressed) states through time. On the

contrary, when this term is not negligible, we have non-adiabatic transitions, Eq.8. Now

how do resonant transitions enter this equation? It must be contained in the second term

as well, since there is no other coupling. To see this, we go back to the 2-level system

described earlier. Let’s assume the field is now on resonance but very weak. From Eq. 8

and 9 we see that the coupling U−1 ∂
∂t
U ∼ θ̇ ∝ χ, which is consistent with a π-pulse of

duration t = π/χ. In other words, while on resonance, no matter how small the coupling

χ is, as long as we wait long enough, we can always have complete population transfer.

The reason for this lies in the coupling phase – while off resonance, even though a large

coupling amplitude induces a large transition rate, the wave function transfered at each time

instance can add either constructively or destructively. While on resonance, all transfered

wavefunction adds up in phase and therefore even a small coupling amplitude can move

a large amount of population. In this aspect, the resonant transition is really a special

case of non-adiabatic coupling. However, we will keep the distinction between these two

mechanisms in the following discussion for two reasons: (1) Off-resonance non-adiabatic

transitions are only noticeable when the coupling is strong, such as in SFI. In order to

study this phenomenon, we should avoid any resonances. (2) Resonant transitions are often

enabled by nuclear motion, and therefore offer a window on nuclear dynamics in the ion. In

order to isolate resonance transitions driven by nuclear dynamics, we can work with sub 10

fs pulses, which effectively “freeze” out nuclear dynamics since the pulses are shorter than
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the fastest vibrational period (C-H stretch at 11 fs).

II. EXPERIMENTS AND RESULTS

In the last section, we have seen that a resonance is a relationship between the energy

gap and laser carrier frequency (∆ = ω − (ωb − ωa)), and the former depends on time

indirectly via nuclear motion. On the other hand, non-adiabaticity depends on the energy

gap (coupling phase) and the instantaneous field (coupling amplitude) independently. This

implies that resonant transitions facilitated by nuclear dynamics prefer relatively long pulses

since they allow more time for the nuclear wave packet to reach a resonance, while non-

adiabatic transitions are mostly sensitive to the carrier frequency and the peak field strength

of the pulse [17]. In order to compare these two effects, we carry out four coincidence VMI

experiments measuring the indirect ionization yields, using 2 molecules (bromoiodomethane,

CH2BrI, and trifluoroiodomethane (CF3I), and 10 and 30 fs pulses. We chose these two

molecules because they have similar electronic structure (which has been studied in detail)

with multiple low lying electronic states in the cation, but the former shows much more

indirect ionization than the latter under similar experimental conditions [12].

The experimental apparatus is very similar to that used in previous work[18]. Briefly,

our light source is an amplified Ti:sapphire laser system, producing 30 fs (intensity FWHM)

pulses centered around 780 nm, at a 1 kHz repetition rate. We produce 10 fs pulses via

filamentation-based spectral broadening and a grating-based pulse compressor [19]. The

laser pulses are focused into an effusive molecular beam in a velocity map imaging (VMI)

apparatus, which maps the transverse momentum of charged particles to spatial position on a

dual stack microchannel plate (MCP) detector. A phosphor screen combined with a CMOS

camera records the spatial distribution of particles [20]. A time-of-flight mass spectrum

(TOFMS) is recorded by monitoring the voltage across the phosphor screen. Using the

TOFMS information, we can identify the mass, and hence the species for each ion. When

there is exactly one electron and one ion detected, it’s considered a valid coincidence event. A

detailed assessment of how false coincidences affect the measurement is provided in an earlier

publication [12]. All electrons recorded have a partner ion, and they are grouped together

to form the photoelectron spectra associated with the appropriate ion species. Since this

experiment involves the comparison of two different molecules, the pulse intensity is chosen
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to yield a similar ionization rate for all four measurments presented below.

FIG. 2. Coincidence photoelectron spectra for CH2BrI, with 30 fs (upper panel) and 10 fs (lower

panel) pulses. Solid lines are measurements and dashed line are fits, which are the sums of all the

shaded Gaussians of the respective color. Labels Dn
i denote electrons coming from the ith order

ionization to state Di (see Equation 1 ).

Figure 2 and Figure 3 show photoelectron spectra measured in coincidence with photoions,

for bromoiodomethane (CH2BrI) and trifluoroiodomethane (CF3I), respectively. The top

panels are measured with 30 fs pulses and the bottom ones with 10 fs (The broadest spectrum

produced by the filament supports 6 fs pulses. FROG measurements put an upper bound

on the pulse duration of ∼10 fs.). Red (light grey) curves are the photoelectron spectra

associated with the parent ion and the blue (dark grey) ones with the dominant fragment

ion (For these two molecules, the parent and the chosen fragment account for more than
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FIG. 3. Coincidence photoelectron spectra for CF3I, with 30 fs (upper panel) and 10 fs (lower

panel) pulses. Solid lines are measurements and dashed line are fits, which are the sums of all the

shaded Gaussians of the respective color. Labels Dn
i denote electrons coming from the ith order

ionization to state Di (see Equation 1 ). There are multiple peaks which are grouped to a single

ionic state because while they correspond to the same ionic state, they correspond to different

intermediate neutral states which Stark shift into resonance at different intensities and therefore

lead to different ponderomotive shifts (cf equation 1).

90% of the yield in these experiments). Solid lines are measured data. Shaded areas are

Gaussian fits whose sums are plotted as dashed lines. Given the ionization potentials of the

relevant states (see Table I), coincidence detection allows us to assign various peaks in the

spectra to states of the ion because of the relationship between the photoelectron energy and

the ionization potential at the moment of ionization (see Equation 1). We refer interested
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readers to previous work[18] for detailed methods used in assigning these peaks. Here we

are mainly interested in the indirect ionization corresponding to those pairs of peaks at

identical energies, one of which is measured in coincidence with the parent and the other

with a fragment ion. The fact that these electrons have the same energy suggests that

their cation partners are in the same state at the moment of ionization. However, after the

electron is liberated, the cation is still subject to the laser field and can be excited to a

more energetic dissociative state, producing fragment ions. The result is that some of these

electrons are measured in coincidence with a fragment ion while the others with the parent.

To better understand the underlying mechanism, we ask two questions: what percentage of

the initially non-dissociative cations (D0 and D1 in our case) are field-excited to dissociative

states, and how does the ratio vary with various parameters? To quantify our measurement,

it’s necessary to first fit the data.

TABLE I. Ionization potentials for CH2BrI and CF3I. D0 denotes the ground ionic state and Di

denotes the ith excited ionic state. “(d)” labels dissociative states.

Species D0(eV) D1(eV) D2(eV) D3(eV)

CH2BrI [18] 9.69 10.26 10.91(d) 11.12(d)

CF3I [21–23] 10.37 11.09 13.02(d) 15.17(d)

In order to fit the data, we start with a multi-Gaussian fit of the spectra in coincidence

with the parent ion for 30 fs pulse. Then we fit the spectra associated with the fragment

ion and impose the constraint that the indirect ionization peaks have the same centers and

widths as their counterparts associated with the parent ion. Next, we fit the spectra taken

with a 10 fs pulse. Generally speaking, the spectra may be shifted compared to those taken

with 30 fs pulse since the central frequencies are not exactly the same. Since the optical

spectrum is broader for a short pulse, we constrain the fitting to be no narrower than their

counterparts for the 30 fs pulse. All measurements and fits are color-coded to distinguish

between electrons in coincidence with parent and fragment ions. The sum of shaded areas

gives the total fit plotted in dashed lines, which is to be compared with the measurement

plotted in solid lines. We integrate each shaded Gaussian to calculate the yield associated

with each pathway. Note that for CF3I, we have named several peaks collectively D0 or D1

for they arise from multiple neutral resonant states with different Stark shifts [24] .
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TABLE II. Ratio of non-dissociative states that undergo post-ionization excitation, which is cal-

culated as dark blue area
dark blue area + dark red area = D0 (or D1) peak in coincidence with fragment

sum of two D0 (or D1) peak in Figure 2 and 3. We

estimate the errors in these ratios be about ±0.1, based on the background signal level.

CH2IBr CF3I

D7
0 D7

1 D8
0 D8

1

30 fs 0.67 0.50 0.05 0.22

10 fs 0.58 0.14 0.07 0.13

Table II lists the fractions of the molecules initially in non-dissociative ionic states that

undergo post-ionization excitation to dissociative states. We note the following: (1) For

CH2IBr, the amount of indirect ionization generally decreases with pulse duration. This

suggests that, under the conditions of our experiment, resonant transitions plays an impor-

tant role. The amount of indirect ionization that persists in going from 30 fs to 10 fs could be

due to two factors: First, since non-adiabatic transitions are less sensitive to pulse duration,

it is likely the cause of the indirect ionization associated with D7
1 for 10 fs pulses. Second,

even though 10 fs pulses leave little time for nuclear dynamics, because of a broader range

of available photon energies and a certain spatial spread of the nuclear wavepacket, it’s still

possible for some portion of the wavepacket to be in resonance if the resonance is close to

the FC point. This should contribute to the indirect ionization associated with D7
0 for 10 fs

pulses. (2) In comparison, there is much less indirect ionization in CF3I, regardless of the

pulse duration. This suggests there is no resonant transition between D0 or D1 and higher

lying dissociative states in the cation. (3) Note in Table I that the energy gaps between

non-dissociative and dissociative states in CH2IBr are smaller than our photon energy (∼

1.6 eV), as well as those in CF3I. The smallest energy gap in CF3I at the FC is between D1

and D2, and is about 2 eV. We will show in Sec. III that along the nuclear coordinate which

largely describes the motion on D0 and D1 after ionization, there are 1-photon resonances

in CH2IBr near the FC while there is only one 2-photon resonance in CF3I that is far away

from the FC. We note that the relative change in the D0 and D1 yields with pulse duration

is due to non-adiabatic dynamics in intermediate neutral states, which we considered in a

separate study [25].
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III. SIMULATIONS

In this section, we discuss two simulations. The first simulation models resonant transi-

tions facilitated by nuclear dynamics in both CH2BrI and CF3I, and the second one explores

the effects of non-adiabatic transitions.

All molecular parameters are obtained from ab initio electronic structure calculations.

Geometry optimization of the parent CF3I molecule and the CF3I+ cation in their ground

electronic states are performed with time-dependent density functional theory (DFT) using

the B3LYP functional [26, 27] and the aug-cc-pVTZ-PP basis [28] set with the help of the

Gaussian09 program package [29]. Excited state energies of the cation at the Franck-Condon

(FC) geometry and at the ground state minimum energy geometry (MIN) are computed with

the multireference configuration interaction [30] method based on a state averaged complete

active space self-consistent field (SA-CASSCF) [27] reference wavefunction using the Mol-

pro program package [31]. Here the active space consists of 17 electrons distributed on 10

orbitals and 6 2A′, 6 2A”, 1 4A′ and 2 4A” spin-free states are included in the averaging.

For both the SA-CASSCF and MRCI computations on CF3I+, the Douglas-Kroll Hamilto-

nian and the ANO-RCC basis set [32, 33] are used, the latter with contractions [4s3p2d1f],

[5s4p2d1f] and [7s6p4d2f1g] for carbon, fluorine and iodine atoms, respectively. Spin-orbit

coupling was also taken into account in the final excited state energies. For simulating the

dynamics in CH2IBr+, the molecular parameters (potential energy curves, spin-orbit cou-

plings and transition-dipole moments) are taken from Ref. [34]. Previous simulations with

these parameters are in excellent agreement with the results of pump-probe measurements.

For the first simulation (Figure 4), we solve the time-dependent Schrödinger equation

(TDSE) at 51 fixed nuclear positions sampled uniformly between the FC and MIN geometry.

The potential energies and transition dipole moments (TDM) at each nuclear position are

linear interpolations of the values at FC and MIN. 8 ionic states for CH2IBr and 10 for

CF3I are included in the TDSE. There are two non-dissociative states in each molecule

(D0 and D1). We manually put a unity of population in a non-dissociative dressed state

(D′0 or D′1) at the peak of the pulse and then solve the TDSE until the end of the pulse

to calculate the fraction of the population that is excited to dissociative states (Di, i ≥ 2).

Note that in the absence of the field, Di = D′i. The relative orientation of the TDMs with

respect to the field polarization is taken into account by uniformly averaging the simulation
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FIG. 4. Fractions of the initial ionic states populations (D0 and D1) excited to higher states as a

function of nuclear coordinate between the FC point and the D0/D0 min for 10 and 30 fs pulses, and

2 and 20 TW/cm2 peak intensities. 8 ionic states for CH2IBr and 10 for CF3I are included in the

TDSE. There are 51 uniform sampling points between the Franck-Condon point and minimum of

the potential. Each point is an average of contributions from both initial states and of 10 different

orientations of the molecule with respect to the laser polarization. Note the difference in y-axis

range for left and right columns.

results over 10 different angles.

As a separate check, we’ve solved the TDSE with nuclear dynamics included on a 3-state

system (the ground neutral state, the ground ionic state and an excited ionic state). The

system is modeled on CH2BrI, that is, using the potential energy curves (PEC) and TDMs

from the ab initio calculation. The simulation shows a similar result: significantly more

population in D2/3 with 30 fs pulse than that with 10 fs pulse. This approach is difficult to

apply to CF3I because, unlike in CH2IBr, the dynamics in CF3I don’t occur along a single

nuclear coordinate. So for simplicity, we only present the first approach here.
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FIG. 5. Dressed and bare state populations during the laser pulse, for 20 TW/cm2 (left panels)

and 2 TW/cm2 (right panels) peak intensities. All population starts from the dressed state D0
′ at

time t=0. The populations in these two states oscillate as the field goes to zero, at which point

the dressed and bare states become identical. In the end, some population is left in D2.

In Figure 4 , we plot the population percentage in dissociative states (starting with all

the population in a non-dissociative state). As mentioned earlier, we see that there are two

resonances in CH2BrI which are closer to the FC point. The only resonance in CF3I in this

simulation comes at around the MIN point. At off-resonance locations, there is a lot more

indirect ionization with 20 TW/cm2 pulses than with 2 TW/cm2, especially for CH2IBr.

The fact that there is less population transfer between ionic states in CF3I than CH2IBr

results from a larger energy gap (see Table I) as well as weaker TDMs. Finally, we note that

at the intensity closest to our experimental conditions (10∼ 20 TW/cm2), the amount of

indirect ionization in both molecules is in qualitative agreement with our measured results.

In order to better understand the effect of non-adiabatic transitions, we consider a 2-
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FIG. 6. Dressed and bare state populations during the laser pulse. A unit population is put into

the dressed state D0
′ by hand at time t=0. The populations oscillate as the field goes to zero, at

which point the dressed and bare states become identical. In the end, some population is left in the

second bare state, D2. (a) 20 TW/cm2 peak intensity, 1 eV energy gap, 1.3 eV photon energy. (b)

2 TW/cm2 peak intensity, 1 eV energy gap, 1.3 eV photon energy. (c) 20 TW/cm2 peak intensity,

1 eV energy gap, 0.7 eV photon energy. (d) 20 TW/cm2 peak intensity, 2 eV energy gap, 1.3 eV

photon energy.

level system in a laser field, (Fig. 5). The TDMs used here are borrowed from the ab

initio calculation in CH2IBr, while we set the pulse peak intensity to either 20 TW/cm2

(left panels) and 2 TW/cm2 (right panels). We assume ionization via tunneling at the

peak of the pulse by manually putting all the population in the dressed state D0
′ at t=0.

Then we solve the TDSE and see how the populations in both dressed and bare states

change as the field turns off. Were the adiabatic approximation valid, we would expect the
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population to remain in the lower dressed state D′0 the whole time as the field oscillates

to zero. As the dressed and bare states coincide in the absence of the field, this implies

that the system would have been in the ground ionic state at the end of the pulse. This is

the case for the lower intensity (2 TW/cm2), while in the case of the 20 TW/cm2 pulse we

see significant non-adiabatic dynamics. The missing population in D′0 can be seen as the

non-adiabatic response of the system to the applied field. We also studied the dependence of

non-adiabatic transitions on the carrier frequency and gap energy. These are illustrated in

figure 6, which shows the dependence of non-adiabatic transitions on pulse intensity (panel

(a) vs (b)), carrier frequency (panel (a) vs (c)) and gap energy (panel (a) vs (d)). These

results corroborate the expectations described in the analytic treatment above.

IV. CONCLUSION

Coincidence detection of electrons and ions provide a means to discriminate between

direct and indirect ionization. In order to understand the mechanism underlying indirect

ionization, we measured photoelectron spectra in coincidence with molecular cations for two

molecules in the halomethane family with 10 and 30 fs pulses. We see more indirect ioniza-

tion when there are resonant transitions, consistent with our simulations. The simulations

which consider non-adiabatic transitions illustrate the dependence on pulse intensity, carrier

frequency and gap energy. They also suggest an increasingly important role of off-resonance

non-adiabatic transitions as one goes to more intense laser fields. Although the experimental

data is consistent with a small amount of non-adiabatic indirect ionization, a more targeted

experiment is needed to quantify this effect at higher intensities.
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Appendix A: Definition of U Matrix

Let U(t) be the unitary transformation that diagonalizes the instantaneous Hamiltonian

H(t). One can show [35] that for a 2-level system :

U(t) =

cos( θ
2
)e−iφ/2 − sin( θ

2
)e−iφ/2

sin( θ
2
)e+iφ/2 cos( θ

2
)e+iφ/2

 (A1)

where

E ′a/b =
1

2
(Ea + Eb)±

1

2

√
(Ea − Eb)2 + 4V 2 (A2)

tan θ =
2|V |
E

, E = Ea − Eb ≡ h̄ω0 (A3)

V = |V |eiφ (A4)

Since we’ve assumed V = V ∗, hence φ = 0 and the TDSE in the dressed state basis becomes:

ih̄
d

dt

a′(t)e−iω′
at

b′(t)e−iω
′
bt

 =

 E ′a
ih̄θ̇
2

− ih̄θ̇
2

E ′b

a′(t)e−iω′
at

b′(t)e−iω
′
bt

 (A5)

which simplifies to Equation 10
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Appendix B: Simulation Model

A strong IR pulse couples ionic states

EIR = EIR(t)
(eiωIRt + c.c.)

2
(B1)

where E(t) = Ee−
t2

2T2 is a Gaussian temporal envelope with intensity FWHM = 2
√
ln2 T ,

which is set to 10 or 30 fs in the current case.

The molecular system consists of several ionic states, whose energies and transition dipole

moments are obtained from ab initio electronic structure calculation. The total electronic

Hamiltonian consists of the free Hamiltonian H0 and the molecule-field dipole-coupling HMF :

H = H0 +HMF (B2)

HMF = −~µ · ~E (B3)

H0 |φi〉 = h̄ωi |φi〉 (B4)

|ψ(t)〉 =
∑
i

ãi(t) |φi〉 (B5)

Substituting (B2) and (B5) into the time dependent Schrödinger equation ih̄ ∂
∂t
|ψ〉 = H |ψ〉

and transforming into the rotating frame ãi(t) = ai(t)e
−iωit, we arrive at :

ȧi =
i

h̄

∑
j 6=i

µij2EIR(t)cos(ωIRt)aj(t)e
−iωjit (B6)

ωij = ωi − ωj

We take into account the dependence of both H0 and ~µ on nuclear position by uniformly

sampling between the Franck-Condon point and minimal potential point. The orientation

of the molecule is accounted for by averaging 10 different orientations of the ~µ with respect

to ~E. Solving Equation B6 gives us Figure 4.
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