362 research outputs found

    The dubious motives of generous men

    Get PDF
    Microbial Biotechnolog

    A head for sex

    Get PDF
    Microbial Biotechnolog

    Wars between microbes on roots and fruits

    Get PDF
    Microbial Biotechnolog

    Understanding Microbial Divisions of Labor

    Get PDF
    Microbial Biotechnolog

    Distance-dependent danger responses in bacteria

    Get PDF
    Microbial Biotechnolog

    Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae.

    Get PDF
    Quorum sensing (QS), where bacteria secrete and respond to chemical signals to coordinate population-wide behaviors, has revealed that bacteria are highly social. Here, we investigate how diversity in QS signals and receptors can modify social interactions controlled by the QS system regulating bacteriocin secretion in Streptococcus pneumoniae, encoded by the blp operon (bacteriocin-like peptide). Analysis of 4096 pneumococcal genomes detected nine blp QS signals (BlpC) and five QS receptor groups (BlpH). Imperfect concordance between signals and receptors suggested widespread social interactions between cells, specifically eavesdropping (where cells respond to signals that they do not produce) and crosstalk (where cells produce signals that non-clones detect). This was confirmed in vitro by measuring the response of reporter strains containing six different blp QS receptors to cognate and non-cognate peptides. Assays between pneumococcal colonies grown adjacent to one another provided further evidence that crosstalk and eavesdropping occur at endogenous levels of signal secretion. Finally, simulations of QS strains producing bacteriocins revealed that eavesdropping can be evolutionarily beneficial even when the affinity for non-cognate signals is very weak. Our results highlight that social interactions can mediate intraspecific competition among bacteria and reveal that competitive interactions can be modified by polymorphic QS systems

    Design principles of collateral sensitivity-based dosing strategies

    Get PDF
    Collateral sensitivity (CS)-based antibiotic treatments, where increased resistance to one antibiotic leads to increased sensitivity to a second antibiotic, may have the potential to limit the emergence of antimicrobial resistance. However, it remains unclear how to best design CS-based treatment schedules. To address this problem, we use mathematical modelling to study the effects of pathogen- and drug-specific characteristics for different treatment designs on bacterial population dynamics and resistance evolution. We confirm that simultaneous and one-day cycling treatments could supress resistance in the presence of CS. We show that the efficacy of CS-based cycling therapies depends critically on the order of drug administration. Finally, we find that reciprocal CS is not essential to suppress resistance, a result that significantly broadens treatment options given the ubiquity of one-way CS in pathogens. Overall, our analyses identify key design principles of CS-based treatment strategies and provide guidance to develop treatment schedules to suppress resistance.Microbial Biotechnolog

    Genome sequence and characterization of Streptomyces phage Pablito, representing a new species within the genus Janusvirus

    Get PDF
    Streptomycetes are ubiquitous soil bacteria. Here we report the complete and annotated genome sequence and characterization of Streptomyces phage Pablito, isolated from a soil sample in Haarlem, the Netherlands using Streptomyces lividans as host. This phage was able to infect a diverse range of Streptomyces strains, but none belonging to the sister genus Kitasatospora. Phage Pablito has doublestranded DNA with a genome length of 49,581 base pairs encoding 76 putative proteins, of which 26 could be predicted. The presence of a serine integrase protein indicated the lysogenic nature of phage Pablito. The phage remained stable over a wide range of temperatures (25–45 °C) and at pH≥ 7.0, but lost infectivity at temperatures above 55 °C or when the pH dropped below 6.0. This newly isolated phage is closely related to Streptomyces phage Janus and Hank144 and considered a new species classifed in the genus Janusvirus, within the subfamily Arquattrovirinae.NWOVI.C.192.002Microbial Biotechnolog
    corecore