124 research outputs found

    Scavenging of retinoid cation radicals by urate, trolox, and α-, β-, γ-, and δ-tocopherols

    Get PDF
    Retinoids are present in human tissues exposed to light and under increased risk of oxidative stress, such as the retina and skin. Retinoid cation radicals can be formed as a result of the interaction between retinoids and other radicals or photoexcitation with light. It has been shown that such semi-oxidized retinoids can oxidize certain amino acids and proteins, and that α-tocopherol can scavenge the cation radicals of retinol and retinoic acid. The aim of this study was to determine (i) whether β-, γ-, and δ-tocopherols can also scavenge these radicals, and (ii) whether tocopherols can scavenge the cation radicals of another form of vitamin A-retinal. The retinoid cation radicals were generated by the pulse radiolysis of benzene or aqueous solution in the presence of a selected retinoid under oxidizing conditions, and the kinetics of retinoid cation radical decays were measured in the absence and presence of different tocopherols, Trolox or urate. The bimolecular rate constants are the highest for the scavenging of cation radicals of retinal, (7 to 8) × 109 M−1·s−1, followed by retinoic acid, (0.03 to 5.6) × 109 M−1·s−1, and retinol, (0.08 to 1.6) × 108 M−1·s−1. Delta-tocopherol is the least effective scavenger of semi-oxidized retinol and retinoic acid. The hydrophilic analogue of α-tocopherol, Trolox, is substantially less efficient at scavenging retinoid cation radicals than α-tocopherol and urate, but it is more efficient at scavenging the cation radicals of retinoic acid and retinol than δ-tocopherol. The scavenging rate constants indicate that tocopherols can effectively compete with amino acids and proteins for retinoid cation radicals, thereby protecting these important biomolecules from oxidation. Our results provide another mechanism by which tocopherols can diminish the oxidative damage to the skin and retina and thereby protect from skin photosensitivity and the development and/or progression of changes in blinding retinal diseases such as Stargardt’s disease and age-related macular degeneration (AMD)

    The ying and yang of idebenone: Not too little, not too much - cell death in NQO1 deficient cells and the mouse retina

    Get PDF
    Idebenone has recently been investigated as a drug therapy for Leber's hereditary optic neuropathy (LHON), a rare genetic mitochondrial disease that causes rapid and progressive bilateral vision loss. Although several studies have shown that idebenone can promote vision recovery in patients with LHON, the evidence for the efficacy of idebenone is still limited. Idebenone failed to demonstrate superiority over placebo in the primary end-points of the only published randomised, double-blind, placebo-controlled trial. There appears to be a patient-specific response to idebenone with high variability in therapeutic outcomes. A recent study suggested that the cytosolic enzyme NAD(P)H: quinone acceptor oxidoreductase (NQO1) is the major enzyme involved in the activation of idebenone, and the beneficial effects of idebenone are dependent on the expression of NQO1. Here, we confirm the NQO1-dependent activity of idebenone, but we also show, for the first time, that the cytotoxicity of idebenone is linked to cellular expression of NQO1. Upon idebenone administration, cells deficient in NQO1 show a marked decrease in viability in comparison to NQO1 expressing cells, with idebenone causing ROS production and deleterious effects on ATP levels and cell viability. In addition, our data highlights that only cells expressing NQO1 can significantly activate idebenone, indicating that other proposed metabolic activation pathways, such as complex II and glycerol-3-phosphate dehydrogenase, do not play a significant role in idebenone activation. Furthermore, we provide evidence of idebenone-induced toxicity in the retina ex-vivo, which can be explained by the variation of NQO1 expression between different cell types in the mouse retina. Idebenone mediated cell rescue in the rotenone ex vivo model also indicated that this drug has a narrow therapeutic window. These findings will help to guide the development of future therapies and drug delivery strategies including intra-ocular administration. The specific dependence of idebenone activity on NQO1 may also explain the variation in patient outcomes in clinical trials

    Photoreactivity of aged human RPE melanosomes: A comparison with lipofuscin

    Get PDF
    purpose. To determine whether aging is accompanied by changes in aerobic photoreactivity of retinal pigment epithelial (RPE) melanosomes isolated from human donors of different ages, and to compare the photoreactivity of aged melanosomes with that of RPE lipofuscin. methods. Human RPE pigment granules were isolated from RPE cells pooled into groups according to the age of the donors. Photoreactivity was determined by blue-light-induced oxygen uptake and photogeneration of reactive oxygen species. Short-lived radical intermediates were detected by spin-trapping, hydrogen peroxide by an oxidase electrode, singlet oxygen by cholesterol assay, and lipid hydroperoxides by iodometric assay. results. Blue-light photoexcitation of melanosomes resulted in age-related increases in both oxygen uptake and the accumulation of superoxide anion spin adducts. The efficiencies of these processes, however, were still significantly lower than that induced by photoexcited lipofuscin. During irradiation of melanosomes, a substantial amount of oxygen was converted into hydrogen peroxide, whereas for lipofuscin, hydrogen peroxide accounted for not more than 3% of oxygen consumed. In contrast to lipofuscin, photoexcited melanosomes did not substantially increase the rate of oxidative reactions in the presence of polyunsaturated lipids or albumin. However, oxygen uptake was significantly elevated in the presence of ascorbate. Thus, the rate of photo-induced oxygen uptake in samples containing both ascorbate and melanosomes approached that observed in lipofuscin samples. conclusions. Blue-light-induced photoreactivity of melanosomes increases with age, perhaps providing a source of reactive oxygen species and leading to depletion of vital cellular reductants, which, together with lipofuscin, may contribute to cellular dysfunction

    Oxidative stress causes ERK phosphorylation and cell death in cultured retinal pigment epithelium: Prevention of cell death by AG126 and 15-deoxy-delta 12, 14-PGJ(2)

    Get PDF
    BACKGROUND: The retina, which is exposed to both sunlight and very high levels of oxygen, is exceptionally rich in polyunsaturated fatty acids, which makes it a favorable environment for the generation of reactive oxygen species. The cytotoxic effects of hydrogen peroxide (H(2)O(2)) induced oxidative stress on retinal pigment epithelium were characterized in this study. METHODS: The MTT cell viability assay, Texas-Red phalloidin staining, immunohistochemistry and Western blot analysis were used to assess the effects of oxidative stress on primary human retinal pigment epithelial cell cultures and the ARPE-19 cell line. RESULTS: The treatment of retinal pigment epithelial cells with H(2)O(2 )caused a dose-dependent decrease of cellular viability, which was preceded by a significant cytoskeletal rearrangement, activation of the Extracellular signal-Regulated Kinase, lipid peroxidation and nuclear condensation. This cell death was prevented partially by the prostaglandin derivative, 15d-PGJ(2 )and by the protein kinase inhibitor, AG126. CONCLUSION: 15d-PGJ(2 )and AG126 may be useful pharmacological tools in the future capable of preventing oxidative stress induced RPE cell death in human ocular diseases

    Light pollution: The possible consequences of excessive illumination on retina

    Get PDF
    Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.Fil: Contin, Maria Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Benedetto, María Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Quinteros Quintana, María Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Guido, Mario Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentin

    A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674]

    Get PDF
    BACKGROUND: Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease. METHODS: The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test. DISCUSSION: A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition

    ‘My child did not like using sun protection’: practices and perceptions of child sun protection among rural black African mothers

    Get PDF
    Abstract Background Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. Methods To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child’s 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. They were then provided with sun protection equipment and advice. A follow-up questionnaire was administered two weeks later. Results Mothers reported that during the week prior to the baseline questionnaire, children spent on average less than 1 hour of time outdoors (most often spent in the shade). Most mothers (97%) liked the sun protection equipment. However, many (78 of 86) reported that their child did not like any of the sun protection equipment and two-thirds stated that the sun protection equipment was not easy to use. Conclusions Among Black Africans in rural northern South Africa, we found a mismatch between parental preferences and child acceptance for using sun protection when outdoors. A better understanding of the health risks of incidental excess sun exposure and potential benefits of sun protection is required among Black Africans

    Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD)

    Get PDF
    corecore