14 research outputs found

    Characterization of acute kidney injury in critically ill patients with severe coronavirus disease 2019

    Get PDF
    Abstract Background Coronavirus disease 2019 (COVID-19)-associated acute kidney injury (AKI) frequency, severity and characterization in critically ill patients has not been reported. Methods Single-centre cohort performed from 3 March 2020 to 14 April 2020 in four intensive care units in Bordeaux University Hospital, France. All patients with COVID-19 and pulmonary severity criteria were included. AKI was defined using Kidney Disease: Improving Global Outcomes (KDIGO) criteria. A systematic urinary analysis was performed. The incidence, severity, clinical presentation, biological characterization (transient versus persistent AKI; proteinuria, haematuria and glycosuria) and short-term outcomes were evaluated. Results Seventy-one patients were included, with basal serum creatinine (SCr) of 69 ± 21 ”mol/L. At admission, AKI was present in 8/71 (11%) patients. Median [interquartile range (IQR)] follow-up was 17 (12–23) days. AKI developed in a total of 57/71 (80%) patients, with 35% Stage 1, 35% Stage 2 and 30% Stage 3 AKI; 10/57 (18%) required renal replacement therapy (RRT). Transient AKI was present in only 4/55 (7%) patients and persistent AKI was observed in 51/55 (93%). Patients with persistent AKI developed a median (IQR) urine protein/creatinine of 82 (54–140) (mg/mmol) with an albuminuria/proteinuria ratio of 0.23 ± 20, indicating predominant tubulointerstitial injury. Only two (4%) patients had glycosuria. At Day 7 after onset of AKI, six (11%) patients remained dependent on RRT, nine (16%) had SCr >200 ”mol/L and four (7%) had died. Day 7 and Day 14 renal recovery occurred in 28% and 52%, respectively. Conclusion Severe COVID-19-associated AKI is frequent, persistent, severe and characterized by an almost exclusive tubulointerstitial injury without glycosuria

    Diaphragm electrical activation during weaning from mechanical ventilation after acute respiratory failure

    No full text
    Le contrĂŽle de la ventilation procĂšde d’une interaction complexe entre des effĂ©rences centrales Ă  destination des groupes musculaires ventilatoires et des affĂ©rences ventilatoires provenant de mĂ©cano et de chĂ©morĂ©cepteurs. Cette commande de la ventilation s’adapte en permanence aux besoins ventilatoires. L’activation Ă©lectrique du diaphragme (EAdi) informe sur la commande ventilatoire, la charge des muscles respiratoires, la synchronie patient-ventilateur et l’efficacitĂ© de la ventilation des patients de rĂ©animation. L’utilisation inadaptĂ©e d’un mode deventilation spontanĂ©e avec une sur ou sous-assistance peut entrainer des dysfonctions diaphragmatiques, des lĂ©sions alvĂ©olaires et des asynchronies. La premiĂšre Ă©tude a permis de cibler l’assistance du mode NAVA en fonction de l’EAdi enregistrĂ©e lors d’un Ă©chec de test de sevrage. Nous avons observĂ© une augmentation quotidienne de cette EAdi au cours du sevrage jusqu’à l’extubation. La deuxiĂšme Ă©tude a montrĂ© que cette augmentation n’est pas associĂ©e Ă  une modification de l’efficacitĂ© neuro-ventilatoire lors du test de sevrage, possiblement en rapport avec l’inhibition d’une sĂ©dation rĂ©siduelle. La troisiĂšme Ă©tude a montrĂ© l’importance de l’inhibition de cette sĂ©dation rĂ©siduelle par midazolam sur l’EAdi et le volume courant au dĂ©but du sevrage ainsi que la corrĂ©lation qui existe entre les deux. Une derniĂšre Ă©tude a montrĂ© l’absence d’augmentation du volume courant sous NAVA chez des patients transplantĂ©s pulmonaires aux poumons dĂ©nervĂ©s sans rĂ©flexe de Herring Breuer par rapport Ă  un groupe contrĂŽle. Par ailleurs le volume courant sous NAVA Ă©tait corrĂ©lĂ© Ă  la capacitĂ© pulmonaire totale. Ces Ă©tudes ont montrĂ© l’intĂ©rĂȘt du monitorage l’EAdi dans le sevrage.The control of breathing results from a complex interaction involving differentrespiratory centers, which feed signals to a central control mechanism that, in turn, provides outputto the effector muscles. Afferent inputs arising from chemo- and mechanoreceptors, related to thephysical status of the respiratory system and to the activation of the respiratory muscles, modulatepermanently the respiratory command to adapt ventilation to the needs. Diaphragm electricalactivation provides information about respiratory drive, respiratory muscle loading, patientventilatorsynchrony and efficiency of breathing in critically ill patients. The use of inappropriatelevel of assist during spontaneous breathing with over or under assist might be harmful withdiaphragmatic dysfunction, alveolar injury and asynchrony. The first study settled NAVA modeaccording to the EAdi recorded during a failed spontaneous breathing trial (SBT). An unexpecteddaily increase of EAdi has been found during SBT until extubation. The second study did not findany increase of the neuroventilatory efficiency during weaning, possibly because of residualsedation. A third study described the inhibition of residual sedation on EAdi and tidal volume at thebeginning of the weaning, and the correlation between them. The last study did not find anyincrease of tidal volume under NAVA after lung transplantation, with denervated lung withoutHerring Breuer reflex, compared to a control group. Moreover tidal volume under NAVA wascorrelated to total lung capacity. These studies highlight the interest of EAdi monitoring duringweaning

    Diaphragm electrical activation during weaning from mechanical ventilation after acute respiratory failure

    No full text
    Le contrĂŽle de la ventilation procĂšde d’une interaction complexe entre des effĂ©rences centrales Ă  destination des groupes musculaires ventilatoires et des affĂ©rences ventilatoires provenant de mĂ©cano et de chĂ©morĂ©cepteurs. Cette commande de la ventilation s’adapte en permanence aux besoins ventilatoires. L’activation Ă©lectrique du diaphragme (EAdi) informe sur la commande ventilatoire, la charge des muscles respiratoires, la synchronie patient-ventilateur et l’efficacitĂ© de la ventilation des patients de rĂ©animation. L’utilisation inadaptĂ©e d’un mode deventilation spontanĂ©e avec une sur ou sous-assistance peut entrainer des dysfonctions diaphragmatiques, des lĂ©sions alvĂ©olaires et des asynchronies. La premiĂšre Ă©tude a permis de cibler l’assistance du mode NAVA en fonction de l’EAdi enregistrĂ©e lors d’un Ă©chec de test de sevrage. Nous avons observĂ© une augmentation quotidienne de cette EAdi au cours du sevrage jusqu’à l’extubation. La deuxiĂšme Ă©tude a montrĂ© que cette augmentation n’est pas associĂ©e Ă  une modification de l’efficacitĂ© neuro-ventilatoire lors du test de sevrage, possiblement en rapport avec l’inhibition d’une sĂ©dation rĂ©siduelle. La troisiĂšme Ă©tude a montrĂ© l’importance de l’inhibition de cette sĂ©dation rĂ©siduelle par midazolam sur l’EAdi et le volume courant au dĂ©but du sevrage ainsi que la corrĂ©lation qui existe entre les deux. Une derniĂšre Ă©tude a montrĂ© l’absence d’augmentation du volume courant sous NAVA chez des patients transplantĂ©s pulmonaires aux poumons dĂ©nervĂ©s sans rĂ©flexe de Herring Breuer par rapport Ă  un groupe contrĂŽle. Par ailleurs le volume courant sous NAVA Ă©tait corrĂ©lĂ© Ă  la capacitĂ© pulmonaire totale. Ces Ă©tudes ont montrĂ© l’intĂ©rĂȘt du monitorage l’EAdi dans le sevrage.The control of breathing results from a complex interaction involving differentrespiratory centers, which feed signals to a central control mechanism that, in turn, provides outputto the effector muscles. Afferent inputs arising from chemo- and mechanoreceptors, related to thephysical status of the respiratory system and to the activation of the respiratory muscles, modulatepermanently the respiratory command to adapt ventilation to the needs. Diaphragm electricalactivation provides information about respiratory drive, respiratory muscle loading, patientventilatorsynchrony and efficiency of breathing in critically ill patients. The use of inappropriatelevel of assist during spontaneous breathing with over or under assist might be harmful withdiaphragmatic dysfunction, alveolar injury and asynchrony. The first study settled NAVA modeaccording to the EAdi recorded during a failed spontaneous breathing trial (SBT). An unexpecteddaily increase of EAdi has been found during SBT until extubation. The second study did not findany increase of the neuroventilatory efficiency during weaning, possibly because of residualsedation. A third study described the inhibition of residual sedation on EAdi and tidal volume at thebeginning of the weaning, and the correlation between them. The last study did not find anyincrease of tidal volume under NAVA after lung transplantation, with denervated lung withoutHerring Breuer reflex, compared to a control group. Moreover tidal volume under NAVA wascorrelated to total lung capacity. These studies highlight the interest of EAdi monitoring duringweaning

    Activité électrique diaphragmatique au cours du sevrage ventilatoire aprÚs insuffisance respiratoire aigue

    No full text
    The control of breathing results from a complex interaction involving differentrespiratory centers, which feed signals to a central control mechanism that, in turn, provides outputto the effector muscles. Afferent inputs arising from chemo- and mechanoreceptors, related to thephysical status of the respiratory system and to the activation of the respiratory muscles, modulatepermanently the respiratory command to adapt ventilation to the needs. Diaphragm electricalactivation provides information about respiratory drive, respiratory muscle loading, patientventilatorsynchrony and efficiency of breathing in critically ill patients. The use of inappropriatelevel of assist during spontaneous breathing with over or under assist might be harmful withdiaphragmatic dysfunction, alveolar injury and asynchrony. The first study settled NAVA modeaccording to the EAdi recorded during a failed spontaneous breathing trial (SBT). An unexpecteddaily increase of EAdi has been found during SBT until extubation. The second study did not findany increase of the neuroventilatory efficiency during weaning, possibly because of residualsedation. A third study described the inhibition of residual sedation on EAdi and tidal volume at thebeginning of the weaning, and the correlation between them. The last study did not find anyincrease of tidal volume under NAVA after lung transplantation, with denervated lung withoutHerring Breuer reflex, compared to a control group. Moreover tidal volume under NAVA wascorrelated to total lung capacity. These studies highlight the interest of EAdi monitoring duringweaning.Le contrĂŽle de la ventilation procĂšde d’une interaction complexe entre des effĂ©rences centrales Ă  destination des groupes musculaires ventilatoires et des affĂ©rences ventilatoires provenant de mĂ©cano et de chĂ©morĂ©cepteurs. Cette commande de la ventilation s’adapte en permanence aux besoins ventilatoires. L’activation Ă©lectrique du diaphragme (EAdi) informe sur la commande ventilatoire, la charge des muscles respiratoires, la synchronie patient-ventilateur et l’efficacitĂ© de la ventilation des patients de rĂ©animation. L’utilisation inadaptĂ©e d’un mode deventilation spontanĂ©e avec une sur ou sous-assistance peut entrainer des dysfonctions diaphragmatiques, des lĂ©sions alvĂ©olaires et des asynchronies. La premiĂšre Ă©tude a permis de cibler l’assistance du mode NAVA en fonction de l’EAdi enregistrĂ©e lors d’un Ă©chec de test de sevrage. Nous avons observĂ© une augmentation quotidienne de cette EAdi au cours du sevrage jusqu’à l’extubation. La deuxiĂšme Ă©tude a montrĂ© que cette augmentation n’est pas associĂ©e Ă  une modification de l’efficacitĂ© neuro-ventilatoire lors du test de sevrage, possiblement en rapport avec l’inhibition d’une sĂ©dation rĂ©siduelle. La troisiĂšme Ă©tude a montrĂ© l’importance de l’inhibition de cette sĂ©dation rĂ©siduelle par midazolam sur l’EAdi et le volume courant au dĂ©but du sevrage ainsi que la corrĂ©lation qui existe entre les deux. Une derniĂšre Ă©tude a montrĂ© l’absence d’augmentation du volume courant sous NAVA chez des patients transplantĂ©s pulmonaires aux poumons dĂ©nervĂ©s sans rĂ©flexe de Herring Breuer par rapport Ă  un groupe contrĂŽle. Par ailleurs le volume courant sous NAVA Ă©tait corrĂ©lĂ© Ă  la capacitĂ© pulmonaire totale. Ces Ă©tudes ont montrĂ© l’intĂ©rĂȘt du monitorage l’EAdi dans le sevrage

    Factors associated with early graft dysfunction in cystic fibrosis patients receiving primary bilateral lung transplantation

    No full text
    International audienceOBJECTIVES: Primary graft dysfunction (PGD) occurs in 10-25% of cases and remains responsible for significant morbidity and mortality after lung transplantation. Our goal was to explore donor and recipient variables and procedure factors that could be related to early graft failure in cystic fibrosis patients receiving bilateral lung transplantation, the PGD grade being derived from the PaO(2)/FiO(2) ratio measured at the sixth post-operative hour. METHODS: Data from 122 cystic fibrosis patients having undergone lung transplantation in six transplant centres in France were retrospectively analysed. Donor and recipient variables, procedure characteristics and anaesthesia management items were recorded and analysed with regard to the PaO(2)/FiO(2) ratio at the sixth post-operative hour. Recipients were divided into three groups according to this ratio: Grade I PGD, when PaO(2)/FiO(2) >300 mmHg or extubated patients, Grade II, when PaO(2)/FiO(2) = 200-300 mmHg, and Grade III, when PaO(2)/FiO(2) <200 mmHg or extracorporeal membrane oxygenation still required. RESULTS: Forty-eight patients were Grade I, 32 patients Grade II and 42 patients Grade III PGD. Oto's donor score, recipient variables and procedure characteristics were not statistically linked to PaO(2)/FiO(2) at the sixth post-operative hour. Ischaemic time of the last implanted graft and the lactate level at the end of the procedure are the only factors related to Grade III PGD in this group. CONCLUSIONS: Hyperlactataemia most probably reflects the severity of early PGD, which leaves graft ischaemic time as the only factor predicting early PGD in a multicentre population of cystic fibrosis lung graft recipients

    Am J Respir Crit Care Med

    No full text
    The rate of lung transplants is increasing, and these patients frequently develop respiratory complications necessitating mechanical ventilation (1). When treating these patients, the risks of mechanical ventilation constitute an important concern, and clinicians aim to simultaneously protect the lung while avoiding ventilator-induced diaphragm dysfunction by maintaining spontaneous breathing. Targeting the ideal VT for each patient is challenging. According to the underlying lung disease of the recipient and his or her previous total lung capacity (TLC), the size of the transplanted lungs may differ from the theoretical TLC based on height. Actual TLC can vary considerably from one transplanted patient to the next and is poorly correlated with height (2). Furthermore, bipulmonary transplanted patients have denervated lungs without vagal afferent fibers. As a consequence, some feedback mechanisms necessary for control of breathing may be lacking, which can result in large VT, as shown in animals (3) and during exercise in lung-transplanted patients (4). Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation that delivers support in proportion to diaphragmatic electrical activity, the latter being a direct expression of neural inspiratory activity (5). Over a certain range of assist, the patient is able to fully control his or her VT, which is not the case with traditional modes of assist. We analyzed VT in patients ventilated with NAVA after bilateral lung transplantation. We compared these volumes with nontransplanted patients at a similar stage of difficult weaning, using the same approach to titrate NAVA. In addition, we examined the relationship between the patient’s VT under NAVA and their most recent TLC
    corecore