666 research outputs found

    UAS pilot support for departure, approach and airfield operations

    Get PDF
    Unmanned Aerial Systems (UAS) have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf (COTS) components is enabling the introduction of UAS into the civil market. The sophistication of existing FCS is also making these systems accessible to end users with little aeronautics expertise. However, much work remains to be done to deliver systems that can be properly integrated in standard aeronautical procedures used by manned aviation

    An assessment for UAS depart and approach operations

    Get PDF
    Unmanned Aerial Systems (UAS) have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf (COTS) components is enabling the introduction of UAS into the civil market. The sophistication of existing FCS is also making these systems accessible to end users with little aeronautics expertise. However, much work remains to be done to deliver systems that can be properly integrated in standard aeronautical procedures used by manned aviation. In previous research advances have been proposed in the flight plan capabilities by offering semantically much richer constructs than those present in most current UAS autopilots. The introduced flight plan is organized as a set of stages, each one corresponding to a different flight phase. Each stage contains a structured collection of legs inspired by current practices in Area Navigation (RNAV). However, the most critical parts of any flight, the depart and approach operations in an integrated airspace remain mostly unexplored. This paper introduces an assessment of both operations for UAS operating in VFR and IFR modes. Problems and potential solutions are proposed, as well as an automating strategy that should greatly reduce pilot workload. Although th

    Depart and approach procedures for UAS in a VFR environment

    Get PDF
    This paper assesses the depart and approach operations of Unmanned Aircraft Systems (UAS) in one of the most challenging scenarios: when flying under Visual Flight Rules (VFR). Inspired by some existing procedures for (manned) general aviation, some automatic and predefined procedures for UAS are proposed. Hence, standardized paths to specific waypoints close to the airport are defined for depart operations, just before starting the navigation phase. Conversely, and for the approach maneuvers, it is foreseen a first integration into a holding pattern near the landing runway (ideally above it) followed by a standard VFR airfield traffic pattern. This paper discusses the advantages of these operations which aim at minimizing possible conflicts with other existing aircraft while reducing the Pilot-in-Command workload. Finally, some preliminary simulations are shown where these procedures have been successfully tested with simulated surrounding traffic

    Chemical recycling of plastics assisted by microwave multi-frequency heating

    Get PDF
    Handling plastic waste through recycling allows extending the life of polymeric materials, avoiding recurrence to incineration or landfilling. In contrast with traditional mechanical recycling technologies, chemical recycling enables the obtention of the virgin monomers by means of depolymerisation to create new polymers with the same mechanical and thermal properties as the originals. Research presented in this paper is part of the polynSPIRE project (Horizon 2020 European funding programme) and develops and scales-up a heated reactor to carry out the depolymerisation of polyamide-6 (PA6), polyamide-6, 6 (PA66) and polyurethane (PU) using microwave (MW) technology as the heating source. The purpose is to design and optimize a MW reactor using up to eight ports emitting electromagnetic waves. Finite element method (FEM) simulation and optimisation are used to design the reactor, considering as parameters the data obtained from experimental dielectric testing and lab-scale characterisation of the processes and materials studied. Two different COMSOL Multiphysics modules are involved in this work: Radio Frequency (RF) and Chemical Reaction Engineering (RE), to simulate the reactor cavity using two frequency levels (915 MHz and 2.45 GHz) with a power level of 46 kW, and the chemical depolymerisation process, respectively. A sensitivity study has been performed on key parameters such as the frequency, the number of ports, and position inside the reactor to consolidate the final design. It is expected that these results assist in the design and scale-up of microwave technology for the chemical recycling of plastics, and for the large-scale deployment of this sustainable recovery alternative. © 2021 The Author

    Cohomological tautness for Riemannian foliations

    Full text link
    In this paper we present some new results on the tautness of Riemannian foliations in their historical context. The first part of the paper gives a short history of the problem. For a closed manifold, the tautness of a Riemannian foliation can be characterized cohomologically. We extend this cohomological characterization to a class of foliations which includes the foliated strata of any singular Riemannian foliation of a closed manifold

    Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature

    Get PDF
    This work explores the preparation of graphene-related materials (GRMs) grown on stainless steel foams via catalytic decomposition of methane (CDM). The main active phases for the reaction are the Fe nanoparticles segregated from the stainless-steel after the activation stage of the foam. The effect of the feed composition and reaction temperature has been studied in order to maximize the productivity, stability and selectivity to GRMs. The maximum productivity attained was 0.116 gC/gfoam h operating at 950 °C with a feed ratio of CH4/H2 = 3 (42.9 %CH4:14.3 %H2). The carbonaceous nanomaterials (CNMs) obtained were characterized by X-Ray diffraction, Raman spectroscopy and by transmission and scanning electron microscopy. The parameters of the kinetic model developed are directly related to the relevant stages of the process, including carburization, diffusion-precipitation and deactivation-regeneration. The balance among these sequential stages determines the overall performance of the activated foam. In conditions of rapid carburization of the Fe NPs (pCH4 > 14 %), the productivity to CNMs is favoured, avoiding an initial deactivation of the active sites by fouling with amorphous carbon. After a rapid carburization, the selectivity to the different CNMs is governed by the ratio CH4/H2, and mainly by the temperature. Thus, the formation of GRMs, mainly Few Layer Graphene (FLG) and even graphene, is favoured at temperatures above 900 °C. At lower temperatures, carbon nanotubes are formed

    Loop Groups, Kaluza-Klein Reduction and M-Theory

    Full text link
    We show that the data of a principal G-bundle over a principal circle bundle is equivalent to that of a \hat{LG} = U(1) |x LG bundle over the base of the circle bundle. We apply this to the Kaluza-Klein reduction of M-theory to IIA and show that certain generalized characteristic classes of the loop group bundle encode the Bianchi identities of the antisymmetric tensor fields of IIA supergravity. We further show that the low dimensional characteristic classes of the central extension of the loop group encode the Bianchi identities of massive IIA, thereby adding support to the conjectures of hep-th/0203218.Comment: 26 pages, LaTeX, utarticle.cls, v2:clarifications and refs adde

    Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example

    Get PDF
    The aim of this work is to highlight the need of monitoring small populations to conserve their genetic variability by using a set of parameters to characterize both the structure of populations and management practices. As a representative example we analyse the pedigree information of the endangered Xalda sheep breed of Asturias. The herdbook of Xalda sheep included a total of 805 animals and 62 herds. The number of founders was 329. Nowadays, there are 562 live animals and 26 active herds. The breed is in risk of losing genetic diversity because of the abusive use of certain individuals as parents. The effective number of founder animals is 81.1. The effective number of founder herds is 9.9. The average value of inbreeding in the whole Xalda population was 1.5%. The average relatedness (AR) coefficient reached 1.8% in the whole pedigree. The genetic representation of the lines of founders is unbalanced. Inbreeding trends and effective size do not provide realistic information concerning the risk of loss of diversity as a result of the shallowness of the genealogical information. We suggest the monitoring of the breed using AR to unbalance the genetic contributions of specific individuals, equalizing the genetic representation of the founders and lines in the population. In addition, AR can suggest the introduction of new, under-represented animals in herds showing high average AR values relative to the population. Our results can be useful to improve the development of conservation initiatives involving open herdbooks to avoid the risk of loss of genetic diversity caused by incorrect management practices

    Angle-resolved photoemission study and first principles calculation of the electronic structure of GaTe

    Full text link
    The electronic band structure of GaTe has been calculated by numerical atomic orbitals density-functional theory, in the local density approximation. In addition, the valence-band dispersion along various directions of the GaTe Brillouin zone has been determined experimentally by angle-resolved photoelectron spectroscopy. Along these directions, the calculated valence-band structure is in good concordance with the valence-band dispersion obtained by these measurements. It has been established that GaTe is a direct-gap semiconductor with the band gap located at the Z point, that is, at Brillouin zone border in the direction perpendicular to the layers. The valence-band maximum shows a marked \textit{p}-like behavior, with a pronounced anion contribution. The conduction band minimum arises from states with a comparable \textit{s}- \textit{p}-cation and \textit{p}-anion orbital contribution. Spin-orbit interaction appears to specially alter dispersion and binding energy of states of the topmost valence bands lying at Γ\Gamma. By spin-orbit, it is favored hybridization of the topmost \textit{p}z_z-valence band with deeper and flatter \textit{px_x}-\textit{py_y} bands and the valence-band minimum at Γ\Gamma is raised towards the Fermi level since it appears to be determined by the shifted up \textit{px_x}-\textit{py_y} bands.Comment: 7 text pages, 6 eps figures, submitted to PR
    corecore