493 research outputs found

    Quantitative demonstration of the superiority of circularly polarized light in fog environments

    Get PDF
    The polarization behavior of light transmitted through scattering media is studied quantitatively. A division of focal plane (DOFP) imaging polarimeter modified with a wideband quarter-wave plate (QWP) is used to evaluate the linear and circular depolarization signals. This system allows the measurement of the linear and circular co-polarization and cross-polarization channels simultaneously. The experiments are carried out at CEREMA’s 30 m fog chamber under controlled fog density conditions. The polarization memory effect with circularly polarized light is demonstrated to be superior in forward transmission compared to the same phenomena with linearly polarized light when imaging inside a scattering medium. This paves the way for its use in imaging through scattering media for hazard detection in different applications.Agència de Gestió d’Ajuts Universitaris i de Recerca (2020FI_B1 00185, 2020FI_B2 00068); European Social Fund; Ministerio de Ciencia e Innovación (MICINN) (PID2020-119484RB-I00).Peer ReviewedPostprint (published version

    On-Board High-Performance Computing For Multi-Robot Aerial Systems

    Get PDF
    With advancements in low-energy-consumption multi/many core embedded-computing devices, a logical transition for robotic systems is Supercomputing, formally known as high performance computing (HPC), a tool currently used for solving the most complex problems for humankind such as the origin of the universe, the finding of deceases’ cures, etc. As such, HPC has always been focused on scientific inquires. However, its scope can be widening up to include missions carried out with robots. Since a robot could be embedded with computing devices, a set of robots could be set as a cluster of computers, the most reliable HPC infrastructure. The advantages of setting up such an infrastructure are many, from speeding up on-board computation up to providing a multi-robot system with robustness, scalability, user transparency, etc., all key features in supercomputing. This chapter presents a middleware technology for the enabling of high performance computing in multi-robot systems, in particular for aerial robots. The technology can be used for the automatic deployment of cluster computing in multi-robot systems, the utilization of standard HPC technologies, and the development of HPC applications in multiple fields such as precision agriculture, military, civilian, search and rescue, etc

    A macroscopic performance analysis of NASA’s northrop grumman RQ-4A

    Get PDF
    This work was partially funded by the Ministerio de Economia y Competitividad of Spain under Contract TRA2016-77012-R and by EUROCONTROL acting on behalf of the SESAR Joint Undertaking (the SJU) and the European Union as part of Work Package E in the SESAR ProgrammeThis paper presents the process of identification, from a macroscopic point of view, of the Northrop Grumman RQ-4A Global Hawk Remote-Piloted Aircraft System from real, but limited flight information. Performance parameters and operational schemes will be extracted by analyzing available data from two specific science flights flown by the Global Hawk back in 2010. Each phase of the flight, take-off, climb, cruise climb, descent and landing, is analyzed from various points of view: speed profile, altitude, climb/descent ratios and rate of turn. The key performance parameters derived from individual flights will be confirmed by performing a wider statistical validation with additional flight trajectories. Derived data are exploited to validate a simulated RQ-4A vehicle employed in extensive real-time air traffic management simulated integration exercises and to complement the development of a future RQ-4A trajectory predictor.Peer ReviewedPostprint (published version

    Geometric model and calibration method for a solid-state LiDAR

    Get PDF
    This paper presents a novel calibration method for solid-state LiDAR devices based on a geometrical description of their scanning system, which has variable angular resolution. Determining this distortion across the entire Field-of-View of the system yields accurate and precise measurements which enable it to be combined with other sensors. On the one hand, the geometrical model is formulated using the well-known Snell’s law and the intrinsic optical assembly of the system, whereas on the other hand the proposed method describes the scanned scenario with an intuitive camera-like approach relating pixel locations with scanning directions. Simulations and experimental results show that the model fits with real devices and the calibration procedure accurately maps their variant resolution so undistorted representations of the observed scenario can be provided. Thus, the calibration method proposed during this work is applicable and valid for existing scanning systems improving their precision and accuracy in an order of magnitude.Peer ReviewedPostprint (published version

    Real-time simulations to evaluate the RPAS integration in shared airspace

    Get PDF
    This paper presents the work done during the first year in the WP-E project ERAINT (Evaluation of the RPAS-ATM Interaction in Non-Segregated Airspace) that intends to evaluate by means of human-in-the-loop real-time simulations the interaction between a Remotely Piloted Aircraft System (RPAS) and the Air Traffic Management (ATM) when a Remotely Piloted Aircraft (RPA) is being operated in shared airspace. This interaction will be evaluated from three different perspectives. First, the separation management, its results are presented in this paper. Secondly, during the next year, the contingency management, also including loss of link situations and, lastly, the capacity impact of such operations in the overall ATM system. The used simulation infrastructure allows to simulate realistic exercises from both the RPAS Pilot-in-Command (PiC) and the Air Traffic Controller (ATCo) perspectives. Moreover, it permits to analyze the actual workload of the ATC and to evaluate several support tools and different RPAS levels of automation from the PiC and ATC sides. The simulation results and the usefulness of the support tools are presented for each selected concept of operations.Peer ReviewedPostprint (published version

    Temporal behavior and processing of the LiDAR signal in fog

    Get PDF
    The interest in LiDAR imaging systems has recently increased in outdoor ground-based applications related to computer vision, in fields like autonomous vehicles. However, for the complete settling of the technology, there are still obstacles related to outdoor performance, being its use in adverse weather conditions one of the most challenging. When working in bad weather, data shown in point clouds is unreliable and its temporal behavior is unknown. We have designed, constructed, and tested a scanning-pulsed LiDAR imaging system with outstanding characteristics related to optoelectronic modifications, in particular including digitization capabilities of each of the pulses. The system performance was tested in a macro-scale fog chamber and, using the collected data, two relevant phenomena were identified: the backscattering signal of light that first interacts with the media and false-positive points that appear due to the scattering properties of the media. Digitization of the complete signal can be used to develop algorithms to identify and get rid of them. Our contribution is related to the digitization, analysis, and characterization of the acquired signal when steering to a target under foggy conditions, as well as the proposal of different strategies to improve point clouds generated in these conditions.This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under the project PID2020-119484RB-I00. The first author gratefully acknowledges the Universitat Politècnica de Catalunya and Banco Santander for the financial support of her predoctoral research grant.Peer ReviewedPostprint (author's final draft

    Exploitation of prokaryotic expression systems based on the salicylate-dependent control circuit encompassing nahR/Psal ::xylS2 for biotechnological applications

    Get PDF
    This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.Expression vectors appear to be an indispensable tool for both biological studies and biotechnological applications. Controlling gene overexpression becomes a critical issue when protein production is desired. In addition to several aspects regarding toxicity or plasmid instability, tight control of gene expression is an essential factor in biotechnological processes. Thus, the search for better-controlled circuits is an important issue among biotechnologists. Traditionally, expression systems involve a single regulatory protein operating over a target promoter. However, these circuits are limited on their induction ratios (e.g., by their restriction in the maximal expression capacity, by their leakiness under non-induced conditions). Due to these limitations, regulatory cascades, which are far more efficient, are necessary for biotechnological applications. Thus, regulatory circuits with two modules operating in cascade offer a significant advantage. In this review, we describe the regulatory cascade based on two salicylate-responsive transcriptional regulators of Pseudomonas putida (nahR/P sal::xylS2), its properties, and contribution to a tighter control over heterologous gene expression in different applications. Nowadays, heterologous expression has been proven to be an indispensable tool for tackling basic biological questions, as well as for developing biotechnological applications. As the nature of the protein of interest becomes more complex, biotechnologists find that a tight control of gene expression is a key factor which conditions the success of the downstream purification process, as well as the interpretation of the results in other type of studies. Fortunately, different expression systems can be found in the market, each of them with their own pros and cons. In this review we discuss the exploitation of prokaryotic expression systems based on a promising expression system, the salicylate-dependent control circuit encompassing nahR/P sal::xylS2, as well as some of the improvements that have been done on this system to exploit it more efficiently in the context of both biotechnological applications and basic research.Peer Reviewe

    UAV payload and mission control hardware/software architecture

    Get PDF
    This paper presents an embedded hardware/software architecture specially designed to be applied on mini/micro Unmanned Aerial Vehicles (UAV). An UAV is low-cost non-piloted airplane designed to operate in D-cube (Dangerous-Dirty-Dull) situations [8]. Many types of UAVs exist today; however with the advent of UAV's civil applications, the class of mini/micro UAVs is emerging as a valid option in a commercial scenario. This type of UAV shares limitations with most computer embedded systems: limited space, limited power resources, increasing computation requirements, complexity of the applications, time to market requirements, etc. UAVs are automatically piloted by an embedded system named “Flight Control System”. Many of those systems are commercially available today, however no commercial system exists nowadays that provides support to the actual mission that the UAV should perform. This paper introduces a hardware/software architecture specially designed to operate as a flexible payload and mission controller in a mini/micro UAV. Given that the missions UAVs can carry on justify their existence, we believe that specific payload and mission controller s for UAV should be developed. Our architectonic proposal for them orbits around four key elements: a LAN based distributed and scalable hardware architecture, a service/subscription based software architecture and an abstraction communication layer.Peer Reviewe

    The ARCHADE: ubiquitous supercomputing for robotics. Part I: philosophy

    Get PDF
    In this work, we introduce Ubiquitous Supercomputing for robotics with the objective of opening our imagination to the development of new powerful heterogeneous multi-robot systems able to perform all kind of missions. Supercomputing, also known as High Performance computing (HPC) is the tool that allows us to predict the weather, understand the origins of the universe, create incredibly realistic fantasy movies, send personalized advertisement to millions of users worldwide and much more. Robotics has been mostly absent in its use of HPC but some previous works have lightly flirted with it. With the findings presented in here, we propose a ubiquitous supercomputing ontology, which allows describing systems made up of robots, traditional HPC infrastructures, sensors, actuators and people and exhibiting scalability, user-transparency and ultimately higher computing efficiency. Moreover, we present a technology called The ARCHADE, which facilitates the development, implementation and operation of such systems, and we propose a mechanism to define and automatize missions carried out by ubiquitous supercomputing systems. As a proof of concept, we present a system depicted as Tigers VS Hunters, which illustrates the potential of this technology. The results presented in here are part of a two series work introducing The ARCHADE. This first delivery presents its philosophy and main features. Correspondingly the second part will present a set of use cases and a complete performance benchmark. Supercomputing is part of our lives and it can be found in many research and industrial endeavors. With the ubiquitous supercomputing ontology and The ARCHADE, supercomputing will become part of robotics as well, bringing it therefore everywhere.Peer ReviewedPostprint (published version
    • …
    corecore