3,506 research outputs found

    Probabilistic Image Colorization

    Get PDF
    We develop a probabilistic technique for colorizing grayscale natural images. In light of the intrinsic uncertainty of this task, the proposed probabilistic framework has numerous desirable properties. In particular, our model is able to produce multiple plausible and vivid colorizations for a given grayscale image and is one of the first colorization models to provide a proper stochastic sampling scheme. Moreover, our training procedure is supported by a rigorous theoretical framework that does not require any ad hoc heuristics and allows for efficient modeling and learning of the joint pixel color distribution. We demonstrate strong quantitative and qualitative experimental results on the CIFAR-10 dataset and the challenging ILSVRC 2012 dataset

    α\alpha particle preformation in heavy nuclei and penetration probability

    Full text link
    The α\alpha particle preformation in the even-even nuclei from 108^{108}Te to 294^{294}118 and the penetration probability have been studied. The isotopes from Pb to U have been firstly investigated since the experimental data allow us to extract the microscopic features for each element. The assault frequency has been estimated using classical methods and the penetration probability from tunneling through the Generalized Liquid Drop Model (GLDM) potential barrier. The preformation factor has been extracted from experimental α\alpha decay energies and half-lives. The shell closure effects play the key role in the α\alpha preformation. The more the nucleon number is close to the magic numbers, the more the formation of α\alpha cluster is difficult inside the mother nucleus. The penetration probabilities reflect that 126 is a neutron magic number. The penetration probability range is very large compared to that of the preformation factor. The penetration probability determines mainly the α\alpha decay half-life while the preformation factor allows us to obtain information on the nuclear structure. The study has been extended to the newly observed heaviest nuclei

    Midcourse maneuver operations program

    Get PDF
    Midcourse Maneuver Operations Program /MMOP/ computes the required velocity change to correct a spacecraft trajectory. The program establishes the existence of maneuvers which satisfy spacecraft constraints, explores alternate trajectories in the event that some out-of-tolerance condition forces a change in plans, and codes the maneuvers into commands

    The perturbed sublimation rim of the dust disk around the post-AGB binary IRAS08544-4431

    Full text link
    Context: Post-Asymptotic Giant Branch (AGB) binaries are surrounded by stable dusty and gaseous disks similar to the ones around young stellar objects. Whereas significant effort is spent on modeling observations of disks around young stellar objects, the disks around post-AGB binaries receive significantly less attention, even though they pose significant constraints on theories of disk physics and binary evolution. Aims: We want to examine the structure of and phenomena at play in circumbinary disks around post-AGB stars. We continue the analysis of our near-infrared interferometric image of the inner rim of the circumbinary disk around IRAS08544-4431. We want to understand the physics governing this inner disk rim. Methods: We use a radiative transfer model of a dusty disk to reproduce simultaneously the photometry as well as the near-infrared interferometric dataset on IRAS08544-4431. The model assumes hydrostatic equilibrium and takes dust settling self-consistently into account. Results: The best-fit radiative transfer model shows excellent agreement with the spectral energy distribution up to mm wavelengths as well as with the PIONIER visibility data. It requires a rounded inner rim structure, starting at a radius of 8.25 au. However, the model does not fully reproduce the detected over-resolved flux nor the azimuthal flux distribution of the inner rim. While the asymmetric inner disk rim structure is likely to be the consequence of disk-binary interactions, the origin of the additional over-resolved flux remains unclear. Conclusions: As in young stellar objects, the disk inner rim of IRAS08544-4431 is ruled by dust sublimation physics. Additional observations are needed to understand the origin of the extended flux and the azimuthal perturbation at the inner rim of the disk.Comment: Accepted for publication in A&A, 13 figures, 13 page

    Correlated projection operator approach to non-Markovian dynamics in spin baths

    Full text link
    The dynamics of an open quantum system is usually studied by performing a weak-coupling and weak-correlation expansion in the system-bath interaction. For systems exhibiting strong couplings and highly non-Markovian behavior this approach is not justified. We apply a recently proposed correlated projection superoperator technique to the model of a central spin coupled to a spin bath via full Heisenberg interaction. Analytical solutions to both the Nakajima-Zwanzig and the time-convolutionless master equation are determined and compared with the results of the exact solution. The correlated projection operator technique significantly improves the standard methods and can be applied to many physical problems such as the hyperfine interaction in a quantum dot

    Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    Get PDF
    S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0e-6 Msol yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5e-5, which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3e-6, and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6e-6, and distribution of CN in W Aql's circumstellar envelope using ground-based data. We find an SiO abundance of 3e-6, and an NH3 abundance of 1.7e-5, confined to a small envelope.Comment: 17 pages, 15 figure
    corecore