72 research outputs found

    Etuaivoidentiteetillisten ihmisen monikykyisistä kantasoluista johdettujen astrosyyttien tuottaminen

    Get PDF
    Astrosyytit ovat hermoston tukisoluja, joiden toiminnalliset ja morfologiset ominaisuudet vaihtelevat eri aivoalueilla. Astrosyyttien ominaisuuksien vaihtelun on todettu olevan erityisen suurta ihmisen aivoissa. Ihmisen pluripotentit kantasolut (hPS-solut) mahdollistavat astroglian monimuotoisuutta säätelevien mekanismien tutkimisen. Olemme luoneet menetelmän, joka tuottaa hPS-soluista ihmisen etuaivojen astrosyyttejä, ja kuvanneet tuotettujen astrosyyttien erityispiirteitä. Määritimme hPS-soluista erilaistettujen solujen geenien ilmentymisprofiilin päivänä 0 (D0), neuronaalisen induktion jälkeen D12 sekä solujen kasvutekijöillä monistamisen jälkeen D30 ja D60. Astrosyyttien lopullinen määräytyminen toteutettiin siliaarisella neurotrofisella tekijällä (ciliary neurotrophic factor; CNTF) ja D95-ikäisien astrosyyttien osoitettiin ilmentävän lähes 100 prosenttisesti yleisesti käytössä olevia astrosyyttimarkkereita. Erilaistamisen aikana tehty geeniprofilointi vahvisti solujen etuaivojen identiteetin. Kuvasimme solunsisäisen kalsiumkuvantamisen avulla, että erilaistamamme astrosyytit olivat elinkykyisiä ja antoivat toiminnallisia vasteita ATP:lle. Lisäksi määritimme astrosyyttien perustehtävää eli kykyä säädellä immuunivasteita aivoissa tutkimalla niistä erittyvien sytokiinien määriä. Totesimme D95-astrosyyttien viljelynesteessä merkittäviä pitoisuuksia MCP-1- ja TIMP-2-proteiinia yhteneväisesti näitä proteiineja ilmentävien geenien kohonneisiin mRNA-määriin. Astrosyyttien erilaistamismenetelmä oli toistettavissa usealla hPSC-linjalla, ja tutkimuksemme osoitti, että erilaistamamme etuaivojen astrosyytit tarjoavat uudenlaisen keinon sekä astrosyyttien soluspesifisten ominaisuuksien että yhteisviljelmissä muiden hermoston solujen kanssa hermoston solujen yhteisvaikutusten tutkimiseen. Potilaskohtaisista hPS-soluista erilaistettujen astrosyyttien avulla voidaan selvittää ihmisen astrosyyttien toimintaa myös sairaustiloissa

    Generation of the Human Pluripotent Stem-Cell-Derived Astrocyte Model with Forebrain Identity

    Get PDF
    Astrocytes form functionally and morphologically distinct populations of cells with brainregion-specific properties. Human pluripotent stem cells (hPSCs) offer possibilities to generate astroglia for studies investigating mechanisms governing the emergence of astrocytic diversity. We established a method to generate human astrocytes from hPSCs with forebrain patterning and final specification with ciliary neurotrophic factor (CNTF). Transcriptome profiling and gene enrichment analysis monitored the sequential expression of genes determining astrocyte differentiation and confirmed activation of forebrain differentiation pathways at Day 30 (D30) and D60 of differentiation in vitro. More than 90% of astrocytes aged D95 in vitro co-expressed the astrocytic markers glial fibrillary acidic protein (GFAP) and S100 beta. Intracellular calcium responses to ATP indicated differentiation of the functional astrocyte population with constitutive monocyte chemoattractant protein-1 (MCP-1/CCL2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression. The method was reproducible across several hPSC lines, and the data demonstrated the usefulness of forebrain astrocyte modeling in research investigating forebrain pathology.Peer reviewe

    Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease.

    Get PDF
    In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement

    Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome

    Get PDF
    Astrocyte function intertwines with the extracellular matrix, whose glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities are found in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We generated human induced pluripotent stem cell-derived FXS and control astrocytes and we found that several pathways associated with urokinase plasminogen activator (uPA) that modulates degradation of extracellular matrix were activated in FXS astrocytes compared with controls. Expression of uPA was increased in FXS astrocytes and levels of uPA were also increased in conditioned medium collected from FXS astrocyte cultures. Levels of uPA correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB, indicating effects of uPA on neuronal plasticity. FXS-specific changes of gene expression during neuronal differentiation preceding astrogenesis likely contributed to altered properties of FXS astrocytes. Our results identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.Peer reviewe

    AP2γ: a new player on adult hippocampal neurogenesis regulation

    Get PDF
    Since the recognition that the mammalian brain retains the ability to generate newborn neurons with functional relevance throughout life, the matrix of molecular regulators that govern adult neurogenesis has been the focus of much interest. In a recent study published in Molecular Psychiatry, we demonstrate Activating Protein 2γ (AP2γ), a transcription factor previously implicated in cell fate determination in the developing cortex, as a novel player in the regulation of glutamatergic neurogenesis in the adult hippocampus. Using distinct experimental approaches, we showed that AP2γ is specifically present in a subpopulation of transient amplifying progenitors, where it acts as a crucial promoter of proliferation and differentiation of adult-born glutamatergic granule neurons. Strikingly, deficiency of AP2γ in the adult brain compromises the generation of new glutamatergic neurons, with impact on the function of cortico-limbic circuits. Here, we share our view on how AP2γ integrates the transcriptional orchestration of glutamatergic neurogenesis in the adult hippocampus, and consequently, how it emerges as a novel molecular candidate to study the translation of environmental pressures into alterations of brain neuroplasticity in homeostatic, but also in neuropathological contexts.Bial Foundation (427/14); Northern Portugal Regional Operational Programme (NORTE 2020); European Regional Development Fund (FEDER) (projects NORTE-01-0145-FEDER-000013 e NORTE-01-0145-FEDER-000023); Competitiveness Factors Operational Programme (COMPETE)info:eu-repo/semantics/publishedVersio

    Aberrant iPSC-derived human astrocytes in Alzheimer's disease

    Get PDF
    The pathological potential of human astroglia in Alzheimer's disease (AD) was analysed in vitro using induced pluripotent stem cell (iPSC) technology. Here, we report development of a human iPSC-derived astrocyte model created from healthy individuals and patients with either early-onset familial AD (FAD) or the late-onset sporadic form of AD (SAD). Our chemically-defined and highly efficient model provides >95% homogeneous populations of human astrocytes within 30 days of differentiation from cortical neural progenitor cells (NPCs). All astrocytes expressed functional markers including; glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1), S100B and glutamine synthetase (GS) comparable to that of adult astrocytes in vivo. However, induced astrocytes derived from both SAD and FAD patients exhibit a pronounced pathological phenotype, with a significantly less complex morphological appearance, overall atrophic profiles, and abnormal localisation of key functional astroglial markers. Furthermore, NPCs derived from identical patients did not show any differences, therefore, validating that remodelled astroglia are not as a result of defective neuronal intermediates. This work not only presents a novel model to study the mechanisms of human astrocytes in vitro, but also provides an ideal platform for further interrogation of early astroglial cell-autonomous events in AD and the possibility of identification of novel therapeutic targets for the treatment of AD

    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived cultures

    Get PDF
    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived culturesHuman motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.This work was funded by Project A.L.S., P2ALS and NYSTEM grant number CO24415. The work of N.J.L. was supported by the Portuguese Foundation for Science and Technology SFRH/BD/33421/2008 and the Luso-American Development Foundation. B.J.-K. was supported by the National Institute of Neurological Disorders and Stroke (NINDS). L.R. was supported by the Swedish Brain Foundation/Hjarnfonden. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Adult Human Brain Harbors Multipotent Perivascular Mesenchymal Stem Cells

    Get PDF
    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain

    Synaptically-Competent Neurons Derived from Canine Embryonic Stem Cells by Lineage Selection with EGF and Noggin

    Get PDF
    Pluripotent stem cell lines have been generated in several domestic animal species; however, these lines traditionally show poor self-renewal and differentiation. Using canine embryonic stem cell (cESC) lines previously shown to have sufficient self-renewal capacity and potency, we generated and compared canine neural stem cell (cNSC) lines derived by lineage selection with epidermal growth factor (EGF) or Noggin along the neural default differentiation pathway, or by directed differentiation with retinoic acid (RA)-induced floating sphere assay. Lineage selection produced large populations of SOX2+ neural stem/progenitor cell populations and neuronal derivatives while directed differentiation produced few and improper neuronal derivatives. Primary canine neural lines were generated from fetal tissue and used as a positive control for differentiation and electrophysiology. Differentiation of EGF- and Noggin-directed cNSC lines in N2B27 with low-dose growth factors (BDNF/NT-3 or PDGFαα) produced phenotypes equivalent to primary canine neural cells including 3CB2+ radial progenitors, MOSP+ glia restricted precursors, VIM+/GFAP+ astrocytes, and TUBB3+/MAP2+/NFH+/SYN+ neurons. Conversely, induction with RA and neuronal differentiation produced inadequate putative neurons for further study, even though appropriate neuronal gene expression profiles were observed by RT-PCR (including Nestin, TUBB3, PSD95, STX1A, SYNPR, MAP2). Co-culture of cESC-derived neurons with primary canine fetal cells on canine astrocytes was used to test functional maturity of putative neurons. Canine ESC-derived neurons received functional GABAA- and AMPA-receptor mediated synaptic input, but only when co-cultured with primary neurons. This study presents established neural stem/progenitor cell populations and functional neural derivatives in the dog, providing the proof-of-concept required to translate stem cell transplantation strategies into a clinically relevant animal model

    Differentiation of Human Embryonic Stem Cells to Regional Specific Neural Precursors in Chemically Defined Medium Conditions

    Get PDF
    Background: Human embryonic stem cells (hESC) provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury. Methodology and Principal Findings: The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA) or to human recombinant basic fibroblast growth factor (bFGF) in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF) and caudalizing (RA) signals were confirmed by patch clamp analysis. Conclusions/Significance: These findings suggest that our differentiation protocol has the capacity to generate regionspecific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-cultur
    corecore