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Abstract

Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially
important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements
remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different
neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-
associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC
cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies
and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor
neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all
showed potent survival effects (EC50 1–2 pM). The number of surviving motor neurons was further enhanced in the
presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay
to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified
human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and
can be used for rigorous cell-based screening.
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Introduction

In vitro differentiation of specific cell types from human

pluripotent stem cells (hPSCs) allows for molecular and functional

analysis of cells that are otherwise inaccessible. This holds special

promise in neurodegenerative diseases such as amyotrophic lateral

sclerosis (ALS), where ethical and technical constraints prevent

access to human spinal motor neurons [1]. Using protocols based

on normal developmental pathways, it has proven possible to

generate spinal motor neurons from both mouse and human

embryonic stem cells (ESCs) [2–6]. These are an important source

of new mechanistic insights into the developmental requirements

of wildtype motor neurons in both species. Moreover, successful

specification of motor neurons from human induced pluripotent

stem cells (hiPSCs) has opened novel avenues for mechanistic

analysis of neuronal cell death and drug testing in motor neuron

disease models [1,4–8]. Yet our knowledge of the survival

requirements of human motor neurons remains limited.

Cultured motor neurons from rodent embryos served as the

basis for identification of the neurotrophic factors responsible for

keeping motor neurons alive during development [9–11] and the

same factors significantly retard motor neuron death in animal

models of ALS [12]. In parallel, motor neurons cultured from

mouse models of ALS shed light on the mechanisms underlying

neurodegeneration [13]. All these discoveries required the

purification of motor neurons from the complex environment of

the spinal cord. This approach allowed for identification of factors
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that act directly on motor neurons, significantly facilitated direct

quantification of motor neuron survival, and opened the door to

biochemical studies that would not have been possible in mixed

cultures. Although this might be considered a reductionist

approach, conclusions about both survival factors and cell death

mechanisms were subsequently validated in vivo [14–21],

demonstrating that the advantages of motor neuron purification

outweigh concerns about the artificial nature of the assay. It is

therefore important to extend such approaches to human motor

neurons. However, standard protocols for hPSC differentiation

generate mixed populations of spinal neurons of which motor

neurons constitute a minority, and to date survival of purified

motor neurons has necessitated generally co-culture with other cell

types [22–25]. There is consequently a need for a robust survival

assay based on purified human motor neurons.

Another challenge is that absolute numbers of motor neurons

generated from hESC/hiPSCs by standard procedures are

relatively low. During embryonic development in rodents, motor

neurons are produced from a short-lived pool of committed

ventral spinal progenitors expressing OLIG2, which are rapidly

exhausted or converted to oligodendroglial progenitors [26,27].

However, in contrast to mouse motor neurons, which are

produced during a brief period between embryonic days 9 and

12, the period of human motor neuron generation spans

approximately twenty days [28,29]. This raises the possibility that

agents that enhance proliferation of motor neuron progenitors

might be used to increase the yield of human motor neurons in

culture.

Here we have developed techniques that allow us both to

amplify stem cell-derived motor neurons and to perform survival

assays in the absence of other cell types. We first report that there

is indeed significant ongoing motor neuron generation in cultures

of differentiated hESCs. To exploit this so as to increase yield, we

therefore screened for compounds that increase the number of

motor neurons when applied over this period. We report that the

ROCK inhibitor Y-27632 stimulates the proliferation of OLIG2-

expressing progenitors, and increases the yield of motor neurons

up to four-fold. Using amplified motor neurons from the

Hb9::GFP hESC line, we next defined conditions for a robust

survival assay using FACS-sorted motor neurons, and used it to

demonstrate potent activity for three known neurotrophic factors

as well as Y-27632 itself. These approaches should be of general

interest for the preparation of human motor neurons on a large

scale and for functional and biochemical studies of molecular

processes controlling motor neuron genesis, survival and degen-

eration.

Results

Ongoing motor neuron generation in cultures of
differentiated hESCs

To determine whether hESCs differentiated in vitro to a mixed

spinal cord identity exhibit prolonged motor neurogenesis as in the

fetal human spinal cord, we first examined changes in numbers of

hESC-derived motor neurons (hESC-MNs) in mixed spinal

cultures over a 15-day period using an hESC reporter line that

expresses green fluorescent protein (GFP) under the control of the

motor neuron-specific murine homeobox gene 9 (Hb9) promoter

[23]. We and others previously showed using a range of other

markers and functional assays that GFP-positive neurons gener-

ated from this line possess many properties of postmitotic motor

neurons [6,23,30]. Motor neurons were differentiated from hESCs

using a standard protocol involving exposure of embryoid bodies

(EBs) to retinoic acid (RA) and recombinant sonic hedgehog

protein (SHH) (see Methods) [4,6]. After 31 days, EBs were

dissociated and cryopreserved to allow multiple experiments to be

performed on identical aliquots; however, similar data were

obtained using fresh, unfrozen cells (not shown). Cell suspensions

were thawed and plated in 96-well plates and automated counts of

live motor neurons, defined as GFP+ neurons with significant

neurite outgrowth (SNO, total neurite length .75 mm), were

performed (Figures 1A and 1B) [31–33]. In standard culture

medium without neurotrophic support motor neuron numbers

decreased over the first 7 days, reaching a plateau that was

maintained until day 31+13 (Figure 1C and 1D). This did not

reflect a loss of reporter expression since a similar decrease was

seen when motor neurons were identified by staining for

endogenous HB9 (not shown). In contrast, when the medium

was supplemented with four neurotrophic factors [NTFs; brain-

derived neurotrophic factor (BDNF), ciliary neurotrophic factor

(CNTF), glial cell line-derived neurotrophic factor (GDNF) and

insulin-like growth factor 1 (IGF-1) at 10 ng/mL] in addition to

the cAMP-elevating compounds forskolin (F; 10 mM) and iso-

butylmethylxanthine (I; 100 mM), after an initial decrease in motor

neuron numbers by day 31+7, there was a subsequent increase in

the number of hESC-MNs, which reached nearly starting levels by

day 31+13 (Figure 1C and 1D).

This late increase in human motor neuron numbers could

potentially be explained by ongoing genesis of motor neurons. To

assess overall generation of new-born motor neurons we cultured

cells with or without NTFs in the continuous presence of the

mitotic label 5’-bromo-2’deoxyuridine (BrdU, 2 mM) and counted

GFP-positive cells that had incorporated BrdU (Figure 1E). After

15 days, ,60% of all Hb9::GFP cells were positive for BrdU in

both conditions (Figures 1F and 1G), but cultures supplemented

with NTFs contained 4-fold higher absolute numbers of new-born

hESC-MNs (Figure 1G, p,0.05). Together, these results demon-

strate that human motor neurons are generated over extended

periods of culture and that the yield of motor neurons can be

increased by treatment with neurotrophic factors.

Screening for small molecules able to increase the yield
of human motor neurons

Neurotrophic factors are costly culture supplements and have

pleiotropic effects on neural development [16,34,35]. To exploit

the high rate of neurogenesis in hESC-MN cultures in a more

targeted manner to increase motor neuron yields, we sought to

identify available reagents with similar activity. We therefore

performed a small-scale screen of 160 bioactive compounds

selected from a collection of drug-like chemicals and examined

their effect on total motor neuron numbers. We reasoned that the

assay might capture two types of compounds, those that increase

motor neuron survival and/or others that increase motor

neurogenesis. Both types of compounds would be of interest as

they could be applied to increase the overall yields of motor

neurons derived from hESCs.

Compounds (10 mM in quadruplicate wells) were added on the

day of seeding and motor neurons were counted at day 31+13, the

time point at which the greatest differences in human motor

neuron numbers between control and NTF-supplemented cultures

were observed (Figure 1C, p,0.001). Most compounds showed no

effect, and a significant number resulted in lower motor neuron

numbers than the negative control condition (Figure 2A). In

contrast, two compounds increased motor neuron numbers by.

1.4 fold compared to basal conditions (Figure 2A). The most

significant increase (1.9-fold) was induced by the Rho kinase

(ROCK) inhibitor Y-27632 (Figure 2A, Y-27632 vs. No NTFs,

p,0.05).

Survival Factors for Human Motor Neurons
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Figure 1. Ongoing birth of motor neurons in hESC-derived cultures is stimulated by neurotrophic factors. (A) Live fluorescent human
motor neurons derived from the Hb9::GFP reporter line at day 31+13 after growth with a cocktail of neurotrophic factors (NTFs). (B) Automated
quantification of fluorescent cells with significant neurite outgrowth (SNO) using the Neurite Outgrowth module of MetaMorph software; cells
counted are identified with a red overlay. Motor neurons were considered to have significant neurite outgrowth when their overall neurite length
exceeded 75 mm (scale bar). (C) Representative image of immunostained Hb9::GFP hESC-motor neuron cultures at day 31+13 after growth with a
cocktail of neurotrophic factors (NTFs). Scale bar = 50 mM. (D) Number of cells with significant neurite outgrowth (SNO) when grown with (red bars) or
without (blue bars) neurotrophic factors, expressed as a percentage of numbers at day 31+1. The increase in motor neuron numbers after day 31+7 in
NTF-supplemented cultures suggests ongoing neurogenesis. Surviving fluorescent GFP-positive motor neurons with SNO shown as mean 6 s.e.m.,
n.5 (t-test, ***p,0.001, *p,0.05). (E) BrdU-positive Hb9::GFP-positive motor neurons (arrows) at day 31+15 confirming the presence of newborn
human motor neurons in culture. Scale bar = 50 mM. (F) The percentage of Hb9::GFP-positive motor neurons that were BrdU-positive at day 31+15 is
not changed by NTFs but (G) total numbers of BrdU-positive motor neurons are increased with NTFs. Bars indicate mean 6 s.e.m., n = 3 (t-test, *p,
0.05; n.s. = not significant).
doi:10.1371/journal.pone.0110324.g001
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The EC50 for Y-27632 at day 31+13 was 1.9 mM with a

maximum effect of ,5-fold (Figure 2B; p,0.05), even greater

than that of neurotrophic factors (Figures 2A and 2C; Y-27632 vs.

NTFs + F + I, p,0.05). To optimize the time window for the

effects of Y-27632, we next studied the kinetics of human motor

neuron generation with or without Y-27632 at its optimal

concentration (10 mM). We focused on its effects when added

post-dissociation at day 31. Maximum numbers of GFP-positive

neurons, representing a ,5-fold increase in motor neuron

numbers over basal levels (Figure 2D, p,0.05) were reached at

day 31+9, which was therefore adopted as the standard time point

for all subsequent experiments.

To exclude the possibility that Y-27632 might have affected the

fidelity of HB9 reporter expression, we checked day 31+9 cultures

Figure 2. The ROCK inhibitor Y-27632 increases human motor neuron numbers in hESC-derived motor neuron cultures. (A) Screening
of 160 compounds for their potential to increase the number of human motor neurons in hESC cultures at day 31+13. Compounds were tested in
quadruplicate at a single concentration (10 mM). Values are plotted as mean fold difference in motor neuron numbers relative to the negative control
condition (No NTFs). The Rho-kinase (ROCK) inhibitor Y-27632 was the compound showing the highest capacity to increase the number of human
motor neurons. (B) Y-27632 increases the number of fluorescent hESC-motor neurons in mixed cultures in a dose-dependent manner. Cells were
cultured in the absence of neurotrophic factors and in the presence of increasing concentrations of Y-27632. Values shown as mean 6 s.e.m., n = 4.
(C) Representative images of hESC-motor neuron cultures at day 31+13 grown under neurotrophic factor deprivation (No NTFs), neurotrophic factor
supplementation (NTFs + F + I) and Y-27632 (10 mM). Scale bar = 25 mM. (D) Time-dependent increase in the number of motor neurons in the
presence (green) but not absence (blue) of Y-27632 (10 mM), with a peak effect at day 31+9. Values shown as mean 6 s.e.m., n.5 (t-test, *p,0.05;
**p,0.01). (E) Y-27632 also increases the total number of cells in culture. Mean 6 s.e.m., n = 3. (F) Hb9::GFP-positive neurons continue to express
motor neuron markers HB9 and ISL1 after treatment with Y-27632 for 9 days. Scale bar = 50 mM. (G) Supplementation of cultures with Y-27632 (red
line) leads to increased numbers of human motor neurons expressing endogenous ISL1 at day 31+9. Mean 6 s.e.m., n = 3 (**p,0.01).
doi:10.1371/journal.pone.0110324.g002
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using direct immunostaining for the motor neuron markers ISL1

and HB9; both showed a high degree of overlap with the GFP

reporter (Figure 2F). Moreover, Y-27632 induced a nearly 4-fold

increase in absolute numbers of hESC-MNs expressing endoge-

nous ISL1 (Figure 2G, p,0.05). Furthermore, to exclude the

possibility that the class of motor neurons generated was altered

with respect to standard differentiation protocols, we quantified

the fraction of GFP-positive neurons expressing FoxP1, a marker

for limb-innervating motor neurons, or Lhx3, a marker of medial

motor neurons [30,36,37]. Comparable numbers of each class

were generated and the ratio was not significantly affected by

amplification with Y-27632 (p.0.05; not shown). One potential

risk of this amplification procedure was that Y-27632 might dilute

out motor neurons by stimulating the generation of other cell

types. However, this did not appear to negatively affect the

outcome: across the many different batches of hES-MNs analyzed

in this study, the final abundance of motor neurons ranged from

5% to 45% of total cells, making it important that all treatment

groups be compared to controls from the same batch. Although we

did not exclude the batches with lower abundance, the value of

45% motor neurons is among the highest reported, demonstrating

that expansion did not lead to excessive motor neuron depletion.

Thus using a small-scale drug testing approach we were able to

identify a compound, Y-27632, which can significantly increase

motor neuron numbers in differentiated hESC cultures.

Y-27632 enhances proliferation of motor neuron
progenitors in both hESC- and hiPSC-derived cultures

To better understand the level at which Y-27632 exerts its

effect, we next examined the expansion of motor neuron

progenitors (pMNs), using OLIG2 as a marker [26]. Treatment

with Y-27632 increased the number of OLIG2-positive cells ,3.6-

fold compared to controls by day 31+9 (Figures 3A and 3B, p,

0.05) comparable to the ,3.3-fold increase in DAPI-stained cells

over controls over the same period [Figure 2E, p.0.05; Ratio

DAPI/OLIG2 = 6.8:1 (CONTROL) vs. 6.2:1 (Y-27632)]. Appli-

cation of BrdU from day 31 to day 31+9 led to nuclear labeling of

86% of OLIG2-positive cells, indicating that they are actively

proliferating progenitors (Figures 3C and 3D). Accordingly, 74%

of GFP-positive motor neurons on day 31+9 were BrdU-positive,

indicating that they were born during the period of Y-27632

treatment (Figures 3E and 3F). Similar percentages were observed

using fresh, unfrozen motor neuron preparations (not shown).

Therefore Y-27632 non-selectively enhances cell proliferation in

hESC-derived cultures, resulting in a ,3.5-fold increase in the

number of motor neuron progenitors that is likely to contribute

significantly to the observed increase in postmitotic hESC-MNs.

To determine whether Y-27632 was a generally effective

treatment for pluripotent stem cell lines, we performed similar

experiments using an additional hESC line, RUES1; and a hiPSC

line, 18c, derived from a healthy control subject [6]. Total

numbers of DAPI-stained cells and OLIG2-positive progenitors

were quantified as above after 31+9 days. Significant increases in

both DAPI-positive and OLIG2-positive cells were observed

following Y-27632 treatment using hiPSC 18c (Figures 3G and

3H, p,0.05) and for DAPI using RUES1 (Figure 3G). To detect

motor neurons in the absence of a reporter we performed

immunostaining for HB9, to label motor neurons, and b-III

tubulin, to label all neurons (Figures 3I and 3J). Automated image

analysis of such cultures revealed a 2- to 4-fold increase in motor

neuron numbers (Figure 3I, p,0.05). Y-27632 is therefore a useful

tool for both hESCs and clinically relevant hiPSC lines.

Design of a robust survival assay for purified human
motor neurons

Our overall goal was to study the trophic requirements of

human motor neurons. Bulk day 31 cultures were therefore

dissociated and grown in the presence of Y-27632 for 3 days or 9

days before FACS analysis, leading to a ,2-fold increase in the

total yield of motor neurons after 3 days (Figure 4A; p,0.01) and

a nearly 4-fold increase after 9 days (Figure 4B; p,0.01). For all

subsequent experiments, expanded human motor neurons from

the day 31+3 time point were used.

Given the ongoing neurogenesis in mixed cultures, it was first

necessary to find conditions in which expanded postmitotic

neurons could be studied in isolation. Direct treatment of mixed

cultures with mitotic inhibitors did not produce satisfactory results:

cytosine arabinoside (AraC) proved toxic for human motor

neurons, while even the less toxic uridine/fluorodeoxyuridine

(U/FdU) led to clumping of neurons on remaining islands of non-

neuronal cells (not shown). Motor neurons were therefore FACS-

sorted (Figure 4C) and seeded on polyornithine/laminin-coated

coverslips in medium containing a cocktail of NTFs plus the c-

AMP elevating compounds forskolin and IBMX. Using FACS

conditions involving a slow sorting rate and a wide nozzle, the

seeded motor neurons rapidly developed robust neurite outgrowth

(Figure 4D). To estimate their purity, we performed immuno-

staining using a combination of antibodies to HB9 and ISL1

(‘‘pan-MN’’) [30]. At day 31+3+1 (differentiation + expansion +
days post-FACS),.95% of the neurons were Hb9::GFP-positive,

and reporter expression showed strong overlap with HB9/ISL1

staining (Figure 4D). Despite this high degree of enrichment,

colonies of proliferating progenitors were occasionally observed

(Figure 4E); sorted motor neurons were therefore cultured in the

presence of the antimitotic drug U/FdU (Figure 4E). The new

protocol therefore provides a robust and abundant source of

highly purified hESC-MNs.

To develop a survival assay based on neurotrophic factor

deprivation [31,38,39], FACS-sorted motor neurons were seeded

in 96-well plates and stained using the vital dye calcein-AM. This

had the advantage that it stained cell bodies and neurites more

intensely than live imaging of GFP, which was no longer required

to identify motor neurons. Numbers of surviving hESC-MNs were

counted in whole culture wells in an automated manner using

MetaMorph (Figure 5A). We first asked whether the survival of

purified motor neurons was dependent on trophic support in these

conditions. At day 31+3+7, motor neuron survival was enhanced

,2.5-fold by a cocktail of NTFs (BDNF, CNTF, GDNF, IGF-1,

each at 10 ng/ml) with F (10 mM) plus IBMX (100 mM)

(Figure 5B), similar to published results using cultures of primary

rodent motor neurons [39–41]. We tested forskolin and IBMX

alone and found that they showed only slight innate neurotrophic

activity (not shown).

This provided an opportunity to better characterize the effects

of known neurotrophic factors on hESC-MNs. Doses of GDNF,

BDNF, CNTF and IGF-1 ranging from 2 pg/mL to 10 ng/mL

were first tested alone for their effects on survival at day 31+3+7

(Figure 5D to 5G). Except for IGF-1 (not shown), which showed

no survival promoting effect alone, each neurotrophic factor

provided significant support for human motor neuron survival

with EC50 values as follows: 2 pM for BDNF, 2 pM for GDNF and

1 pM for CNTF. These are slightly higher than the most potent

EC50 values reported for the same factors on primary rodent

motor neurons (BDNF, EC50 = 1 pM [38]; GDNF, EC50 = 0.2 pM

[31]; CNTF, EC50 = 0.1 pM [18,42]); this may reflect differences

related to species, human stem cell origin or batch of neurotrophic

factor. Since the effects of neurotrophic factors on rat motor

Survival Factors for Human Motor Neurons
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Figure 3. Y-27632 enhances proliferation of motor neuron progenitors in hESC- and hiPSC-derived motor neuron cultures. (A) Y-
27632-supplemented cultures contain increased numbers of OLIG2-positive cells at day 31+9. Scale bar = 50 mM. (B) Time-dependent increase in
numbers of OLIG2-expressing progenitors in the presence of Y-27632. Data normalized to control at day 31+1; mean 6 s.e.m., n.5 (t-test, **p,0.01).
(C) OLIG2 progenitors at day 31+9 stained for BrdU. Scale bar = 25 mM. (D) Percent of OLIG2 precursors that are BrdU-positive at day 31+9 (mean 6
s.e.m., n = 4). (E) Hb9::GFP-expressing motor neurons at day 31+9 stained for BrdU. Scale bar = 25 mM. (F) Percent motor neurons that are BrdU-
positive at day 31+9 (mean 6 s.e.m., n = 4). (G) The total number of cells in culture is increased at day 31+9 following Y-27632 treatment of hESC

Survival Factors for Human Motor Neurons
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neurons in defined media was reported to depend on intracellular

cAMP levels [40,41], we also tested the effects of inclusion of

forskolin and IBMX (F+I). The neurotrophic activity of each

factor tested appeared to be increased in the presence of F+I,

though this effect was only significant for single points at the

highest concentration of GDNF (Figure 5D-F). To determine

whether different neurotrophic factors were potentially acting on

different subsets of motor neurons in the cultures, we next

performed a dose-response analysis for a combination of all factors

with a fixed concentration of F+I (Figure 5H). The maximum

number of motor neurons maintained in culture was not

significantly greater than that with BDNF, CNTF or GDNF

alone (with F+I). This suggests that essentially all viable motor

neurons are maintained by optimal doses of these single factors, at

least after 7 days in culture. Therefore, like their rodent

counterparts, human motor neurons show an exquisitely sensitive

response to multiple neurotrophic factors.

Lastly, to evaluate the ability of the newly developed human

motor neuron survival assay to detect novel neurotrophic

compounds, we determined whether the beneficial effect of Y-

27632 on human motor neuron numbers, in addition to its effect

on progenitor proliferation, might also reflect a survival effect. To

exclude effects on cell attachment we first verified that the

presence of the drug did not affect hESC-MN numbers after

24 hours (Figure 6A). After 7 days in culture, Y-27632 had a clear

dose-dependent survival effect (Figures 6B and 6C), though to a

more modest extent than neurotrophic factors. The EC50 for the

Y-27632 survival effect on motor neurons was 2 mM, similar to the

value for motor neuron expansion. Thus Y-27632 not only

promotes proliferation of motor neuron progenitors but also

functions as a motor neuron survival factor. The fact that the fold-

increase in survival was lower than that induced in long-term

treatment of mixed cultures (Fig. 2B), likely reflects the absence of

proliferation and/or other cell types.

RUES1 and hiPSC18c. Values are mean 6 s.e.m., n$3 (t-test, *p,0.05). (H) Numbers of OLIG2 precursors increase significantly at day 31+9 following Y-
27632 treatment of hiPSC 18c. Values are mean 6 s.e.m., n$3 (t-test, *p,0.05). (I) Numbers of motor neurons identified by staining for endogenous
HB9 increase significantly at day 31+9 following Y-27632 treatment of hESC RUES1 and hiPSC 18c. Values are mean 6 s.e.m., n$3 (t-test, *p,0.05). (J)
Cultures from healthy control hESCs (RUES1) or hiPSCs (18c) immunostained for the motor neuron marker HB9 and the pan-neuronal marker b-III
tubulin. Y-27632 increases the number of motor neurons in each case. Scale bar = 25 mM.
doi:10.1371/journal.pone.0110324.g003

Figure 4. FACS-sorting of amplified cultures yields a pure preparation of viable human motor neurons. (A) Y-27632 supplementation
for 3 days leads to a 1.8-fold increase in motor neuron yield judged by FACS analysis. Data normalized to controls without Y-27632. Values are mean
6 s.e.m., n.5 (t-test, **p,0.01). (B) Nine-day treatment with Y-27632 gives a ,5-fold increase in motor neuron yield as compared to controls without
Y-27632, as quantified by flow cytometry. Values are mean 6 s.e.m., n.5 (t-test, **p,0.01). (C) FACS purification of Hb9::GFP motor neurons
expanded with Y-27632 for 3 days. Representative FACS gating used to retrieve an almost pure (.95%) population of human motor neurons. (D)
FACS-purified motor neurons at day 31+3+1 stained for GFP (green), and a combination of HB9 and ISL1 (‘‘pan-MN’’; white nuclei)..95% of the FACS-
purified cells in culture are Hb9::GFP positive. Scale bar = 25 mM. (E) Even following FACS sorting, some contaminant cells were able to proliferate
and form colonies that interfered with survival assays (left panel). Uridine/Fluorodeoxyuridine (U/FdU) (each at 1 mM) successfully prevented the
proliferation (right panel).
doi:10.1371/journal.pone.0110324.g004
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Discussion

Human embryonic and induced pluripotent stem cells (hESCs

and hiPSCs) represent a powerful tool for studying human

development, disease modeling and drug discovery. However,

one major limiting factor for prospective drug screens is the

efficiency with which the affected cell types can be generated and,

in the case of motor neurons and many other neuronal classes, the

absence of a validated survival assay. Here, we took advantage of

our observation of ongoing motor neuron generation in hESC-

derived cultures to devise a new method for amplification of motor

neuron progenitors to increase motor neuron yields. In addition,

using optimized conditions for FACS sorting of neurons expressing

the Hb9::GFP reporter, we developed a robust assay for survival

factors acting directly on postmitotic motor neurons, and used it to

show that human motor neurons respond in a potent manner to

both known and novel neurotrophic molecules.

The ongoing neurogenesis in human motor neuron cultures that

we describe contrasts with the short ,24-hour period of motor

neuron production in differentiated mouse ES cell cultures [43].

This is likely to reflect normal biological differences in the

development of motor systems in rodent and human embryos,

since human motor neurons are produced over an extended three-

week period in vivo [28,29]. We first exploited this to screen for

compounds that would further amplify the precursor population,

identifying Y-27632 as the most active compound in a screen

which, like higher-throughput assays, was carried out at a single

concentration. Exactly how Y-27632 is achieving this may involve

multiple mechanisms, but we considered three potential modes of

action for Y-27632 in increasing numbers of motor neuron

progenitors. First, it could act by blocking differentiation of

progenitors to motor neurons. This seems unlikely since the

numbers of OLIG2-positive precursors and motor neurons

increased in parallel. Second, it might specifically promote the

generation of OLIG2-positive precursors. Since total DAPI

numbers increased in parallel, such a selective effect seems

unlikely. We therefore believe Y-27632 acts by shortening cell

cycle time for dividing precursors as a whole, leading to expansion

– but not enrichment – of motor neuron progenitors and a

subsequent increase in motor neuron yield [44–46].

Nevertheless, the ongoing neurogenesis also provides a poten-

tially serious confound for interpretation of experiments examining

changes in motor neuron numbers in mixed cultures. In studies

that do not take this into account, it is possible that an increase of

motor neuron numbers attributed to improved survival may

instead reflect an effect on neurogenesis. To overcome this issue,

we FACS-purified motor neurons derived from the Hb9::GFP

hESC line and cultured them alone in the presence of a mitotic

inhibitor U/FdU to inhibit proliferation of any remaining

progenitors. This is in some ways analogous to the approach

recently reported by Yang et al. [24], except that to block

proliferation they used cytosine arabinoside, which was cytotoxic

in our hands. Moreover, their cell survival experiments, performed

over a 20-day period, required a mouse astrocyte monolayer as

substrate, whereas our cultures contained essentially only motor

neurons.

Using this essentially pure preparation of postmitotic motor

neurons we showed that three known neurotrophic factors

potently enhance human motor neuron survival, and that their

action is potentiated when endogenous levels of cAMP are

Figure 5. Purified human motor neurons show a potent response to known neurotrophic factors. (A) Whole-well imaging of live motor
neurons labeled with calcein-AM captured using the Plate Runner (left two panels). Surviving human motor neurons were counted in whole culture
wells in an automated manner using MetaMorph (red tracing, right two panels). Scale bar = 200 mm. (B) Y-27632-expanded motor neurons show
enhanced survival in the presence of a cocktail of neurotrophic factors. Values shown as mean 6 s.e.m., n.5 (t-test, ***p,0.001). (C) GDNF, (D) BDNF
and (E) CNTF alone (blue lines) enhance the survival of expanded FACS-purified human motor neurons. The addition of F+I significantly potentiates
the survival-inducing activity of GDNF at high concentrations. Values shown as mean 6 s.e.m., n.4 (t-test, *p,0.05; **p,0.01; ***p,0.001). Asterisks
on individual points represent significance of difference with No-NTF control (white rectangle in the curve); asterisks on bars represent significant
differences between a given concentration of NTF and the corresponding value for NTF + F+ I. (F) The cocktail of neurotrophic factors (NTFs)
enhances the survival of expanded FACS-purified human motor neurons in a dose-dependent manner in the presence of 10 mM forskolin plus
100 mM IBMX. Values shown as mean 6 s.e.m., n$5 (t-test, **p,0.01; ***p,0.001).
doi:10.1371/journal.pone.0110324.g005

Figure 6. Y-27632 is also a survival factor for human motor neurons. (A) The plating efficiency of FACS-purified human motor neurons after
24 hours is not increased in the presence of Y-27632. (B) Y-27632 enhances the survival of FACS-purified human motor neurons in a 7-day survival
assay. Scale bar = 200 mM. (C) Dose-dependent effects of Y-27632 on human motor neuron survival, expressed relative to the basal condition (0 mM).
Values shown as mean 6 s.e.m., n$5 (t-test, *p,0.05; **p,0.01).
doi:10.1371/journal.pone.0110324.g006
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increased. Therefore, in this respect, the human stem cell-derived

neurons closely resemble rodent motor neurons both in primary

culture and in vivo. Since dependence on trophic factors is

acquired over time during embryogenesis [47], this also suggests

that the human motor neurons have reached a stage of maturation

comparable to those in the mid-embryonic period in mice.

Y-27632 has been shown to have contrasting biological effects

in different systems, ranging from pro-proliferative effects on

hESCs and hiPSCs [48,49] to anti-proliferative effects on cancer

cells [50], cord blood-derived CD34+ hematopoietic progenitor

cells [51], hepatic stellate cells [52] and smooth muscle cells [53].

While it is neuroprotective for primary mouse Purkinje cells [54],

retinal ganglion cells [55] and murine hippocampal slice cultures

[56] and growth-promoting for corticospinal tract axons [57,58]

and adult optic nerve [59], Y-27632 is not protective for hiPSC-

derived dopaminergic neurons [60]. Our study extends others

which suggest that Y-27632 exhibits generally beneficial effects on

motor neurons. A recent report documented an increase in the

lifespan of an intermediate mouse model of SMA following

administration of fasudil, another ROCK inhibitor [61]. Even

though the compound was not able to halt motor neuron loss in

the ventral horn of the spinal cord, positive effects on the

maturation of the neuromuscular junction and muscle fiber size

were reported [61]. More recently, fasudil was reported to extend

survival – and reduce motor neuron death - in a mouse model of

amyotrophic lateral sclerosis [62]. Therefore, the neurotrophic

properties of Y-27632 described here for cultured human neurons

likely reflect a mechanism of action that is conserved across species

and in vivo.

In summary, our study defines conditions for systematic assays

of neurotrophic factors and survival-promoting compounds for

human motor neurons. We show that the technique can be

extended to human iPSC-derived motor neurons and therefore in

principle to comparisons between cells derived from ALS patients

and controls: we and others recently derived Hb9::GFP or

Hb9::RFP reporters for different ALS-iPSC lines [63]. Important-

ly, in agreement with our earlier studies on the expression of

specific markers, electrophysiological characteristics and develop-

ment following transplantation [6,30], we show that the neuro-

trophic dependence of human stem cell-derived motor neurons

has reached a state of maturity comparable to that of primary

embryonic motor neurons in vitro and in vivo. Although more still

needs to be done before they can be considered to reflect the

properties of the postnatal spinal cord, this validates their use as a

human model for analyzing multiple aspects of motor neuron

development and pathology.

Materials and Methods

Cell lines
All the human ES and iPSC lines have been reported in an

earlier publication [6]. The iPS cell lines were derived by retroviral

transduction of OCT4, SOX2, and KLF4 in dermal fibroblasts.

All pluripotent cell lines were characterized by conventional

methods and grown under standardized conditions as described

below.

Ethics Statement
The work performed with human motor neurons derived from

hESCs and hiPSCs has been approved by Columbia University

ESCRO committee (Embryonic Stem Cell Research Oversight

committee). Patient fibroblasts for generating human iPS lines

were collected with written informed consent under IRB approval

AAAC1257 from Columbia University Medical Center.

Growth of hPSC lines
We used an HB9::GFP reporter hESC line [23], the wild-type

hESCs line RUES1 and hiPSC line 18c [6]. All cell cultures were

maintained in a humidified incubator at 37uC and 5% CO2.

Human ESCs and hiPSCs were grown on a pre-gelatinized tissue

culture flask on a monolayer of irradiated CF-1 mouse embryonic

fibroblasts (MEFs; GlobalStem) plated at 15,000–18,000 cells/cm2

in hPSC medium [DMEM/F12 (Invitrogen), 20% knockout

serum replacement (Invitrogen), 1 mM L-glutamine (Gibco),

100 mM non-essential aminoacids (Gibco) and 100 mM b-mer-

captoethanol (Sigma-Aldrich)] supplemented with 20 ng/ml

recombinant human basic fibroblast growth factor (bFGF; R&D

Systems). Medium was changed every day for the duration of the

expansion and lines were passaged every 4–6 days using dispase

(Gibco) at 1 mg/mL in hPSC medium for 30 minutes at 37uC.

Differentiation of hESCs and hiPSCs into motor neurons
hESCs and hiPSCs were allowed to reach 75%–90% con-

fluency. Then, colonies were treated with dispase (1 mg/mL) to

separate colonies from the MEF layer. After 30 minutes, cells were

washed off the flask using hPSC medium and collected in a 50 mL

Falcon tube. Colonies were allowed to settle by gravity and then

medium was aspirated. Fresh hPSC medium was added to the

cells. This step was repeated three times to wash away all the

remaining dispase. Settled colonies were then mechanically

dissociated into small 10- to 15-cell chunks using a P1000 tip by

performing up and down movements in a 1 mL volume. Cell

aggregates were transferred to low adherence T75 flasks in hPSC

medium with 20 ng/mL bFGF and 20 mM Y-27632 (Ascent) for

the first 24 hours. At day 1, cells for all experiments were

supplemented with hPSC medium containing 20 ng/mL bFGF,

20 mM Y-27632, 10 mM SB431542 (Sigma-Aldrich) and 0.2 mM

LDN193189 (Stemgent). The medium was changed daily from

day 2 to day 4. At day 5, embryoid bodies (EBs) were switched to

medium composed of 50% hPSC medium and 50% neural

induction medium [NIM; DMEM/F12 (Invitrogen), 1% N2

supplement (Invitrogen), 1 mM L-glutamine (Gibco), 100 mM

non-essential aminoacids (Gibco) and 2 mg/mL heparin (Sigma-

Aldrich)] supplemented with 10 mM SB431542, 0.2 mM

LDN193189, 10 ng/mL recombinant human brain-derived neu-

rotrophic factor (BDNF; R & D Systems), 0.4 mg/mL ascorbic

acid (Sigma-Aldrich) and 1 mM retinoic acid (Sigma-Aldrich). At

Day 7 cells were switched to 100% NIM, keeping the same

medium supplementation. Every other day between days 9 and 21,

NIM supplemented with 10 ng/mL BDNF, 0.4 mg/mL ascorbic

acid, 1 mM retinoic acid and 200 ng/mL recombinant C25II

modified sonic hedgehog protein (SHH; Invitrogen) was added to

the EBs. At day 22, cells were cultured with 50% NIM and 50%

neural differentiation medium [NDM; Neurobasal (Invitrogen),

1% N2 Supplement (Invitrogen), 1 mM L-Glutamine (Gibco) and

100 mM Non-Essential Aminoacids (Gibco)] supplemented with

2% B-27 supplement (Invitrogen), 0.4 mg/mL ascorbic acid, 1 mM

retinoic acid, 200 ng/mL SHH (Invitrogen), 10 ng/mL BDNF,

10 ng/mL recombinant human ciliary neurotrophic factor

(CNTF; R & D Systems), 10 ng/mL recombinant human glial

cell line-derived neurotrophic factor (GDNF; R & D Systems) and

10 ng/mL recombinant human insulin-like growth factor 1 (IGF-

1; R & D Systems). Between days 24 and 31, the bulk medium was

switched to 100% NDM and the EBs grown under the previous

medium supplementation. After 31 days of differentiation the EBs

were dissociated and the resulting neuronal cultures cryopre-

served. Briefly, the EBs were collected in a 50 mL Falcon tube and

then washed twice with PBS without Ca2+ and Mg2+ (Invitrogen)

to eliminate residual media. The EBs were then incubated at 37uC
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in pre-warmed 0.05% Trypsin-EDTA (Invitrogen) for 5–10

minutes. Lastly, fetal bovine serum (Invitrogen) supplemented

with 100 mg/mL deoxyribonuclease I (DNAse I, Sigma-Aldrich)

was added to stop the trypsin reaction and the cells were spun for 5

minutes at 4006g. The cells were resuspended in 1 mL of

complete trituration and wash medium [CTWM, PBS without

Ca2+ and Mg2+, 25 mM Glucose (Sigma-Aldrich), 4% L-15

dialyzed BSA (Sigma-Aldrich), 100 mg/mL DNAse I, 1% N2

supplement, 2% B27 supplement, 600 mM magnesium chloride

(Sigma-Aldrich), 500 nM EDTA (Sigma-Aldrich) and 2% FBS]

and subsequently mechanically triturated using a P1000 tip. The

resulting cell suspension was filtered using a 40 mM cell strainer

(BD Falcon) to eliminate large residual clumps and centrifuged for

5 minutes at 4006g. The cells were then resuspended in NDM

supplemented with 2% B27, 0.4 mg/mL ascorbic acid, 25 mM

glutamate E (Sigma-Aldrich), 25 mM b-mercaptoethanol (Milli-

pore), 0.1 mM retinoic acid, 10 ng/mL BDNF, 10 ng/mL CNTF,

10 ng/mL GDNF and 10 ng/mL IGF-1. These cells were

counted and then prepared for cryopreservation using 2x Freezing

Media (Millipore). Vials of 5–10 million cells/mL were prepared

to be used in further experiments.

Coating of 96-well plates
All survival and proliferation studies were performed in 96-well

plates (Greiner Bio-One) coated with polyornithine (Sigma-

Aldrich) and mouse laminin (Invitrogen). Briefly, 100 mg/mL

polyornithine (Sigma-Aldrich) in cell culture water was added to

the wells for at least 2 hours then aspirated and the wells rinsed

once using water. Coating was completed by adding overnight

15 mg/mL mouse laminin in L15 medium (Sigma-Aldrich)

supplemented with 7.5% sodium bicarbonate (Gibco). In studies

involving FACS-sorted cells, a concentration of 1000 mg/mL

polyornithine was used for coating.

Studies involving mixed hPSC-derived motor neuron
cultures

All proliferation/survival studies involving mixed hPSC-derived

motor neuron cultures were started from previously cryopreserved

vials. After quickly thawing the vials in a 37uC water bath, cells

were resuspended in NDM medium supplemented with 2% B27

Supplement. Cells were then spun at 4006g for 5 minutes. The

supernatant was gently aspirated and cells resuspended in 10 mL

of NDM with 2% B27. A 4% BSA protein cushion was then

layered under the cell suspension and the cells spun at 4006g for 5

minutes, with low acceleration and deceleration. Afterwards, cells

were resuspended in basal medium (BM) [Custom Clear

Neurobasal (Invitrogen), which omits phenol red and riboflavin

to allow live fluorescent imaging in the presence of a significantly

attenuated auto-fluorescent background; 1 mM L-glutamine and

100 mM non-essential aminoacids, 2% B27, 0.4 mg/mL ascorbic

acid, 25 mM glutamate E, 25 mM b-mercaptoethanol, 0.1 mM

retinoic acid] and counted using a hemocytometer. Finally, cells

were resuspended at the final desired seeding concentration of

32,000 cells/well and 100 mL was added to each well. Cells were

allowed to attach at 37uC for 2 hours before addition of

supplements at 3x concentration in 50 mL of BM.

Screening for small molecules with the potential to
increase numbers of human motor neurons in culture

From a collection of drug-like chemicals from the Microsource

and Tocris collections, two plates containing a total of 160

compounds were selected. Each compound was tested at 10 mM.

Basal medium to dilute compounds from original stocks was M-

199 (without phenol red; Invitrogen) with 5% DMSO (100%

anhydrous, Fisher Scientific), freshly prepared. Survival in BM was

used as negative control (trophic factor deprivation). Survival in

BM supplemented with a cocktail of NTFs [BDNF, CNTF,

GDNF and IGF-1] plus the cAMP-elevating compounds forskolin

(F; 10 mM; Sigma-Aldrich) and isobutylmethylxanthine (I;

100 mM; Sigma-Aldrich) was the positive control (trophic factor

supplementation). Cells were seeded at 32,000 cells/well in 150 mL

and compounds added in a 15 mL volume (the final DMSO

concentration of 0.45% did not adversely affect motor neuron

survival when added alone, not shown). The same volume of M-

199 with 5% DMSO was added to the negative control wells.

NTFs + F + I were also added in 15 mL of M-199 with 5% DMSO

in positive control wells. For each set, compounds were tested in

quadruplicate by creation of 4 test plates. In each plate, each

control condition (positive and negative) had six replicate wells.

Readouts were performed on day 31+13. After quantification of

the total number of surviving cells with significant neurite

outgrowth (see Results), data were plotted as mean fold difference

as compared to numbers in the negative control condition. Plates

were rejected when the mean difference in cells numbers between

positive and negative control was lower than 1.3 fold. Validation of

the most active compounds was performed by serial dose response

studies.

Immunocytochemistry
Neuronal cultures were pre-fixed by adding one volume of 4%

paraformaldehyde diluted in phosphate-buffered saline 1x

(PBS1x/4%PFA) for 2 minutes at room temperature. Then, cells

were fixed with PBS1x/4%PFA for 30 minutes at 4uC. After

fixation, cells were washed with PBS1x three times for 5 minutes

and then permeabilized and quenched for at least 30 minutes

using PBS1x with 0.1% Triton-X (PBSTX-0.1%) supplemented

with 100 mM glycine and 0.1% Sodium Azide (Sigma-Aldrich).

Cells were blocked in PBSTX-0.1% containing 10% donkey

serum (Sigma-Aldrich) and 0.1% sodium azide (Sigma-Aldrich)

(blocking solution) for one hour. After blocking, cells were

incubated overnight at 4uC with primary antibodies diluted in

the blocking solution. Primary antibodies used in this study were

the following: rabbit anti-GFP (1:3000, Abcam), mouse anti-ISL1

(1:200, DSHB, 39.4D5), guinea-pig anti-ISL1 (1:2000, courtesy of

Susan Brenner-Morton, Jessell laboratory at Columbia Universi-

ty), mouse anti-HB9 (1:100, DSHB, MNR2 81.5C10-c), chicken

anti-b-III Tubulin (TUJ1, 1:1000, Neuromics), rabbit anti-Olig2

(1:1000, Millipore) and rat anti-BrdU (1:150, Serotec). Cells were

washed five times with PBSTX-0.1% for 5 minutes. Antigens were

visualized by incubating for 60–75 minutes at room temperature

with the appropriate secondary antibodies (DyLight 488, 549 and

649 conjugated, 1:1000, Jackson ImmunoResearch). Lastly,

neuronal cultures were again washed five times with PBSTX-

0.1% for 5 minutes and incubated in a solution containing DAPI

(1:50000, Sigma-Aldrich) for 15 minutes. Cells were washed once

with PBSTX-0.1% and then imaged.

BrdU incorporation studies
5-bromo-2-deoxuridine (BrdU) incorporation studies were

performed to analyze cell proliferation. Neuronal cultures were

incubated with BrdU (2 mM; Sigma-Aldrich) for the full duration

of culture until fixation with PFA. The standard protocol for

immunochemistry described above was followed for other antigens

besides BrdU. Then, to detect BrdU incorporation, cells were

again pre-fixed for 2 minutes at room temperature and fixed with

PBS1x/4% PFA for 15 minutes at 4uC. They were then washed

with PBS1x three times for 5 minutes. Cells were then incubated
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with pre-warmed (37uC) 2 M HCl in distilled water for 10 minutes

at 37uC, light protected. Lastly, the HCl was aspirated and cells

were incubated in 0.15 M boric acid in distilled water for 2

minutes at room temperature. Cells were then washed three times

with PBS1x for 5 minutes and blocked for 1 hour using blocking

solution. Finally, cells were incubated overnight at 4uC with rat

anti-BrdU primary antibody (1:150, Serotec) in blocking solution.

In order to correct for any non-specific background staining, the

same procedures were performed on samples incubated or not

with BrdU.

FACS purification and motor neuron survival studies
HB9::GFP reporter hESC-derived motor neurons were grown

in polyornithine/laminin-coated T75 flasks prior to FACS

purification in order to maximize the amount of cells retrieved

after the procedure. After the expansion period, the medium was

aspirated and cells washed once with PBS without Ca2+ and Mg2+

to eliminate residual medium. The cells were then incubated at

37uC in pre-warmed 0.05% Trypsin-EDTA for 5 minutes. DNAse

I-supplemented FBS was used to stop the trypsin reaction. Cells

were collected and centrifuged for 5 minutes at 4006g. Cells were

resuspended in complete trituration and wash medium [CTWM,

PBS without Ca2+ and Mg2+, 25 mM Glucose (Sigma-Aldrich),

4% L-15 dialyzed BSA (Sigma-Aldrich), 100 mg/mL DNAse I, 1%

N2 supplement, 2% B27 supplement, 600 mM magnesium

chloride (Sigma-Aldrich), 500 nM EDTA (Sigma-Aldrich) and

2% FBS], filtered through a 40 mM Cell Strainer (BD Falcon) and

centrifuged for 5 minutes, at 4006g. The cells were then

resuspended in 750–800 mL of CTWM and transferred to a

sorting tube (BD Falcon). Cells were sorted based on GFP

expression using a BD FACS Aria II sorter (Becton Dickinson)

configured with a 100 mm ceramic nozzle and operating at 20 psi

for no longer than 30 minutes. Purified cells were collected in a

tube containing CTWM. After collection cells were spun for 5

minutes at 400xg and resuspended in Basal FACS Medium [Basal

Medium with Clear Custom Neurobasal, supplemented with

1 mM uridine/fluorodeoxyuridine (U/FdU; Sigma-Aldrich),

100 Units/mL Penicillin (Invitrogen), 100 mg/mL Streptomycin

(Invitrogen) and 100 mg/mL Normocyn (InvivoGen)]. After cells

were counted using a hemocytometer, they were resuspended at

the final seeding concentration of 2000 cells/well and added to the

wells in 100 mL. Medium supplements were added to the cells at

3x concentration in 50 mL of Basal FACS Medium after the cells

were allowed to incubate at 37uC for 2 hours in order to attach to

the bottom of the plate. Readouts were performed after 7 days.

Calcein live imaging
To facilitate the imaging of FACS-sorted GFP-positive cells, we

used the Calcein-AM Red-Orange (Invitrogen) vital dye at 2.5 mM

concentration. Briefly, cells were incubated with the dye for 5

minutes and then extraneous fluorescence was quenched using

5 mg/mL hemoglobin before image acquisition using the Plate

Runner (Trophos).

Image acquisition and quantitative image analysis
Image acquisition was performed using either a Carl Zeiss

Observer Z1 epi-fluorescence Microscope (Carl Zeiss Inc.;

acquisition of 12 images per well at 10x magnification) or the

whole well imaging device Plate Runner (Trophos). Automated

quantitative image analysis of fluorescent surviving hESC-MNs

and stained neuronal cultures was performed using the Meta-

Morph Software V7.6 (Molecular Devices). The Neurite Out-

growth application in the software was employed to quantify

fluorescent human motor neurons that have neurite outgrowth

above a certain threshold, reducing the number of false-positive

cells such as non-viable neurons included in the analysis.

Quantitative analysis of stained hPSC-derived human motor

neuron cultures was performed using the Multi-Wavelength Cell

Scoring application. For a specific marker, positive cells were

selectively identified as having clear signal intensity above local

background. Intensity thresholds were set blinded to sample

identity. In a given experiment the same parameters were used in

all images analyzed. Parameters were only minimally adjusted

across different experiments.

Statistical Analyses
All quantitative data were analyzed using IBM SPSS Statistics

19 (IBM SPSS). For each set of data a double statistical evaluation

was performed: A) for each condition/time point mean values

were compared using one-way ANOVA statistical evaluation

followed by Tukey HSD Post-hoc test; B) possible interactions

between time and condition were assessed using two-way ANOVA

statistical evaluation. In cases involving only one time point and a

two-group comparison, p value was determined using Student’s t-

test. Differences were considered to be significant when p,0.05.
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