3,755 research outputs found

    Methane mitigation timelines to inform energy technology evaluation

    Get PDF
    Energy technologies emitting differing proportions of methane (CH[subscript 4]) and carbon dioxide (CO[subscript 2]) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH[subscript 4]-emitting technologies prior to an optimal switching year, followed by CH[subscript 4]-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH[subscript 4] mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.MIT Energy InitiativeMassachusetts Institute of Technology. Charles E. Reed Faculty Initiative FundNew England University Transportation Center (DOT Grant DTRT12-G-UTC01)National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374

    Coronagraphic Observations of the Lunar Sodium Exosphere January-June, 2017

    Get PDF
    In order to observe the lunar sodium exosphere out to one-half degree around the Moon, we designed, built and installed a small robotically controlled coronagraph at the Winer Observatory in Sonoita, Arizona. Observations are obtained remotely every available clear night from our home base at Goddard Space Flight Center or from Prescott, Arizona. We employ an Andover temperature-controlled 1.5-angstrom-wide narrow-band filter centered on the sodium D2 line, and a similar 1.5-angstrom filter centered blueward of the D2 line by 3 angstroms for continuum observations. Our data encompass lunations in 2015, 2016, and 2017, thus we have a long baseline of sodium exospheric calibrated images. During the course of three years we have refined the observational sequence in many respects. Therefore this paper only presents the results of the spring, 2017, observing season. We present limb profiles from the south pole to the north pole for many lunar phases. Our data do not fit any power of cosine model as a function of lunar phase or with latitude. The extended Na exosphere has a characteristic temperature of about 22506750 degrees Kelvin, indicative of a partially escaping exosphere. The hot escaping component may be indicative of a mixture of impact vaporization and a sputtered component

    Probing liquid surface waves, liquid properties and liquid films with light diffraction

    Full text link
    Surface waves on liquids act as a dynamical phase grating for incident light. In this article, we revisit the classical method of probing such waves (wavelengths of the order of mm) as well as inherent properties of liquids and liquid films on liquids, using optical diffraction. A combination of simulation and experiment is proposed to trace out the surface wave profiles in various situations (\emph{eg.} for one or more vertical, slightly immersed, electrically driven exciters). Subsequently, the surface tension and the spatial damping coefficient (related to viscosity) of a variety of liquids are measured carefully in order to gauge the efficiency of measuring liquid properties using this optical probe. The final set of results deal with liquid films where dispersion relations, surface and interface modes, interfacial tension and related issues are investigated in some detail, both theoretically and experimentally. On the whole, our observations and analyses seem to support the claim that this simple, low--cost apparatus is capable of providing a wealth of information on liquids and liquid surface waves in a non--destructive way.Comment: 25 pages, 12 figures, to appear in Measurement Science and Technology (IOP

    Realistic Earth escape strategies for solar sailing

    Get PDF
    With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased

    Seasonally timed treatment programs for Ascaris lumbricoides to increase impact - an investigation using mathematical models

    Get PDF
    There is clear empirical evidence that environmental conditions can influence Ascaris spp. free-living stage development and host reinfection, but the impact of these differences on human infections, and interventions to control them, is variable. A new model framework reflecting four key stages of the A. lumbricoides life cycle, incorporating the effects of rainfall and temperature, is used to describe the level of infection in the human population alongside the environmental egg dynamics. Using data from South Korea and Nigeria, we conclude that settings with extreme fluctuations in rainfall or temperature could exhibit strong seasonal transmission patterns that may be partially masked by the longevity of A. lumbricoides infections in hosts; we go on to demonstrate how seasonally timed mass drug administration (MDA) could impact the outcomes of control strategies. For the South Korean setting the results predict a comparative decrease of 74.5% in mean worm days (the number of days the average individual spend infected with worms across a 12 month period) between the best and worst MDA timings after four years of annual treatment. The model found no significant seasonal effect on MDA in the Nigerian setting due to a narrower annual temperature range and no rainfall dependence. Our results suggest that seasonal variation in egg survival and maturation could be exploited to maximise the impact of MDA in certain settings

    Exploring \pp scattering in the \1N picture

    Get PDF
    In the large NcN_c approximation to QCDQCD, the leading \pp scattering amplitude is expressed as the sum of an infinite number of tree diagrams. We investigate the possibility that an adequate approximation at energies up to somewhat more than one GeVGeV can be made by keeping diagrams which involve the exchange of resonances in this energy range in addition to the simplest chiral contact terms. In this approach crossing symmetry is automatic but individual terms tend to drastically violate partial wave unitarity. We first note that the introduction of the ρ\rho meson in a chirally invariant manner substantially delays the onset of drastic unitarity violation which would be present for the {\it current algebra} term alone. This suggests a possibility of local (in energy) cancellation which we then explore in a phenomenological way. We include exchanges of leading resonances up to the 1.3GeV1.3 GeV region. However, unitarity requires more structure which we model by a four derivative contact term or by a low lying scalar resonance which is presumably subleading in the \1N expansion, but may nevertheless be important. The latter two flavor model gives a reasonable description of the phase shift δ00\delta^0_0 up until around 860MeV860 MeV, before the effects associated which the KKˉK\bar{K} threshold come into play.Comment: 27 LaTex pages + 13 figures (also available in hard-copy

    Organization theory and military metaphor: time for a reappraisal?

    Get PDF
    A ‘conventional’ use of military metaphor would use it to convey attributes such as hierarchical organization, vertical communication and limited autonomy. This is often used in contrast to a looser form of organization based on the metaphor of the network. However, this article argues that military practice is more complex, with examples of considerable autonomy within the constraints of central direction. It is suggested that not only might this be a more useful metaphor for many contemporary organizations, but also that simplistic uses of military metaphor divert our attention away from the functions that management hierarchies play. The discussion is embedded within a critical realist account of metaphor, arguing for both its value and the need for its further development
    corecore