78 research outputs found

    Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)2] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy

    Get PDF
    Portlandite [Ca(OH)2] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)2] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO2(OH)n]2–n (n = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility

    In Situ EXAFS Study of Sr Adsorption on TiO2(110) under High Ionic Strength Wastewater Conditions

    Get PDF
    In order to provide important details concerning the adsorption reactions of Sr, batch reactions and a set of both ex situ and in situ Grazing Incidence X-ray Absorption Fine Structure (GIXAFS) adsorption experiments were completed on powdered TiO2 and on rutile(110), both reacted with either SrCl2 or SrCO3 solutions. TiO2 sorption capacity for strontium (Sr) ranges from 550 ppm (SrCl2 solutions, second order kinetics) to 1400 ppm (SrCO3 solutions, first order kinetics), respectively, and is rapid. Sr adsorption decreased as a function of chloride concentration but significantly increased as carbonate concentrations increased. In the presence of carbonate, the ability of TiO2 to remove Sr from the solution increases by a factor of ~4 due to rapid epitaxial surface precipitation of an SrCO3 thin film, which registers itself on the rutile(110) surface as a strontianite-like phase (d-spacing 2.8 Å). Extended X-ray Absorption Fine Structure (EXAFS) results suggest the initial attachment is via tetradental inner-sphere Sr adsorption. Moreover, adsorbates from concentrated SrCl2 solutions contain carbonate and hydroxyl species, which results in both inner- and outer-sphere adsorbates and explains the reduced Sr adsorption in these systems. These results not only provide new insights into Sr kinetics and adsorption on TiO2 but also provide valuable information concerning potential improvements in effluent water treatment models and are pertinent in developing treatment methods for rutile-coated structural materials within nuclear power plants

    Geochemical evidence of the seasonality, affinity and pigmenation of Solenopora jurassica

    Get PDF
    Solenopora jurassica is a fossil calcareous alga that functioned as an important reef-building organism during the Palaeozoic. It is of significant palaeobiological interest due to its distinctive but poorly understood pink and white banding. Though widely accepted as an alga there is still debate over its taxonomic affinity, with recent work arguing that it should be reclassified as a chaetetid sponge. The banding is thought to be seasonal, but there is no conclusive evidence for this. Other recent work has, however demonstrated the presence of a unique organic boron-containing pink/red pigment in the pink bands of S. jurassica. We present new geochemical evidence concerning the seasonality and pigmentation of S. jurassica. Seasonal growth cycles are demonstrated by X-ray radiography, which shows differences in calcite density, and by varying δ13C composition of the bands. Temperature variation in the bands is difficult to constrain accurately due to conflicting patterns arising from Mg/Ca molar ratios and δ18O data. Fluctuating chlorine levels indicate increased salinity in the white bands, when combined with the isotope data this suggests more suggestive of marine conditions during formation of the white band and a greater freshwater component (lower chlorinity) during pink band precipitation (δ18O). Increased photosynthesis is inferred within the pink bands in comparison to the white, based on δ13C. Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) show the presence of tetramethyl pyrrole, protein moieties and carboxylic acid groups, suggestive of the presence of the red algal pigment phycoerythrin. This is consistent with the pink colour of S. jurassica. As phycoerythrin is only known to occur in algae and cyanobacteria, and no biomarker evidence of bacteria or sponges was detected we conclude S. jurassica is most likely an alga. Pigment analysis may be a reliable classification method for fossil algae

    Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH) 2 ] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-03, pub-electronic 2021-11-08Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; Grant(s): EP/1036389/1Portlandite [Ca(OH)2] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)2] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO2(OH)n]2–n (n = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility

    Groundwater–rock interactions in crystalline rocks: evidence from SIMS oxygen isotope data

    Get PDF
    The diffusive exchange of dissolved material between fluid flowing in a fracture and the enclosing wallrocks (rock matrix diffusion) has been proposed as a mechanism by which radionuclides derived from a radioactive waste repository may be removed from groundwater and incorporated into the geosphere. To test the effectiveness of diffusive exchange in igneous and metamorphic rocks, we have carried out an investigation of veins formed at low temperatures (<100°C), comparing the oxygen isotopic composition of vein calcite with that of secondary calcite in the wallrocks. Two examples of veins from the Borrowdale Volcanic Group, Cumbria, and one from the Mountsorrel Granodiorite, Leicestershire, UK, have remarkably similar vein calcite compositions, ca. +20‰(SMOW) or greater, substantially heavier than the probable compositions of the host rocks, and these vein calcite compositions are inferred to reflect the infiltrating fluid and the temperature of vein formation. Calcites from the wallrocks are similar to those in veins, with little evidence for exchange with the wallrocks. The results support existing models for this type of vein which suggest low-temperature growth from formation brines originally linked to Permian or Triassic evaporites. The results are consistent with flow through fractures being attenuated through a damage zone adjacent to the fracture and provide no evidence of diffusional exchange with pore waters from wallrocks

    Natural analogue evidence for controls on radionuclide uptake by fractured crystalline rock

    Get PDF
    Fractured Crystalline Rocks (FCR) are being considered in several countries as hosts for radioactive waste repositories. In FCR, radionuclides may be transported relatively rapidly by bulk groundwater flow through open fractures, but much more slowly by diffusion through porewater in the rock matrices. Rock matrix diffusion (RMD) is the diffusion of radionuclides in the aqueous phase, between open fractures and rock matrices. Sorption or co-precipitation on the fracture surfaces and walls of the matrix pores causes further radionuclide retardation. RMD may be important in a repository's safety case and has been investigated by many published short-term (to a few years) laboratory and in-situ experiments. To improve understanding over longer timescales, we investigated evidence for RMD of several natural radioelements, and radioelement analogues, in five exemplar fractured crystalline rock (FCR) samples aged between c. 70 Ma and c. 455 Ma. The sample suite consisted of two samples of Borrowdale Volcanic Group (BVG) meta-tuff from northwest England, a sample of Carnmenellis Granite from southwest England and two samples of Toki Granite from central Japan. Uptake or loss of the studied elements is limited to an altered damage zone in each sample, coupled to mineral alteration processes. These zones are most extensive (a few tens of millimetres) in the Toki Granite samples. We also found unstable primary igneous minerals to persist in the immediate wallrocks of fractures in studied granite samples, suggesting that pores were not permanently water saturated in these samples. Although only a small sample suite was studied, the results show that while RMD may be important in some kinds of FCR, in others it may be negligible. Site-specific information is therefore needed to determine how much reliance can be placed on RMD when developing a safety case

    Seasonal calibration of the end-cretaceous Chicxulub impact event

    Get PDF
    The end-Cretaceous Chicxulub impact triggered Earth’s last mass-extinction, extinguishing ~ 75% of species diversity and facilitating a global ecological shift to mammal-dominated biomes. Temporal details of the impact event on a fine scale (hour-to-day), important to understanding the early trajectory of mass-extinction, have largely eluded previous studies. This study employs histological and histo-isotopic analyses of fossil fish that were coeval with a unique impact-triggered mass-death assemblage from the Cretaceous-Paleogene (KPg) boundary in North Dakota (USA). Patterns of growth history, including periodicity of ẟ18O and ẟ13C and growth band morphology, plus corroborating data from fish ontogeny and seasonal insect behavior, reveal that the impact occurred during boreal Spring/Summer, shortly after the spawning season for fish and most continental taxa. The severity and taxonomic symmetry of response to global natural hazards are influenced by the season during which they occur, suggesting that post-impact perturbations could have exerted a selective force that was exacerbated by seasonal timing. Data from this study can also provide vital hindsight into patterns of extant biotic response to global-scale hazards that are relevant to both current and future biomes

    Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    Get PDF
    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (D13Corg~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significant neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~-15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological (in vivo) weathering of silt- to clay-sized lithic components and feldspar. This newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis

    Seasonal calibration of the end-cretaceous Chicxulub impact event

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-08-29, accepted 2021-11-29, collection 2021-12, registration 2021-12-01, pub-electronic 2021-12-08, online 2021-12-08Publication status: PublishedAbstract: The end-Cretaceous Chicxulub impact triggered Earth’s last mass-extinction, extinguishing ~ 75% of species diversity and facilitating a global ecological shift to mammal-dominated biomes. Temporal details of the impact event on a fine scale (hour-to-day), important to understanding the early trajectory of mass-extinction, have largely eluded previous studies. This study employs histological and histo-isotopic analyses of fossil fish that were coeval with a unique impact-triggered mass-death assemblage from the Cretaceous-Paleogene (KPg) boundary in North Dakota (USA). Patterns of growth history, including periodicity of ẟ18O and ẟ13C and growth band morphology, plus corroborating data from fish ontogeny and seasonal insect behavior, reveal that the impact occurred during boreal Spring/Summer, shortly after the spawning season for fish and most continental taxa. The severity and taxonomic symmetry of response to global natural hazards are influenced by the season during which they occur, suggesting that post-impact perturbations could have exerted a selective force that was exacerbated by seasonal timing. Data from this study can also provide vital hindsight into patterns of extant biotic response to global-scale hazards that are relevant to both current and future biomes

    An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms

    Get PDF
    Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to provide robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. The tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation
    • …
    corecore