2,339 research outputs found

    Nonlinear magnetoacoustic waves in a cold plasma

    Get PDF
    The equations describing planar magnetoacoustic waves of permanent form in a cold plasma are rewritten so as to highlight the presence of a naturally small parameter equal to the ratio of the electron and ion masses. If the magnetic field is not nearly perpendicular to the direction of wave propagation, this allows us to use a multiple-scale expansion to demonstrate the existence and nature of nonlinear wave solutions. Such solutions are found to have a rapid oscillation of constant amplitude superimposed on the underlying large-scale variation. The approximate equations for the large-scale variation are obtained by making an adiabatic approximation and in one limit, new explicit solitary pulse solutions are found. In the case of a perpendicular magnetic field, conditions for the existence of solitary pulses are derived. Our results are consistent with earlier studies which were restricted to waves having a velocity close to that of long-wavelength linear magnetoacoustic waves

    A solitary-wave solution to a perturbed KdV equation

    Get PDF
    We derive the approximate form and speed of a solitary-wave solution to a perturbed KdV equation. Using a conventional perturbation expansion, one can derive a first-order correction to the solitary-wave speed, but at the next order, algebraically secular terms appear, which produce divergences that render the solution unphysical. These terms must be treated by a regrouping procedure developed by us previously. In this way, higher-order corrections to the speed are obtained, along with a form of solution that is bounded in space. For this particular perturbed KdV equation, it is found that there is only one possible solitary wave that has a form similar to the unperturbed soliton solution

    Nonlocal spectral properties of disordered alloys

    Full text link
    A general method is proposed for calculating a fully k-dependent, continuous, and causal spectral function A(k,E) within the recently introduced nonlocal version of the coherent-potential approximation (NLCPA). The method involves the combination of both periodic and anti-periodic solutions to the associated cluster problem and also leads to correct bulk quantities for small cluster sizes. We illustrate the method by investigating the Fermi surface of a two-dimensional alloy. Dramatically, we find a smeared electronic topological transition not predicted by the conventional CPA.Comment: 17 pages, 5 figures, Submitted to: J. Phys.: Condens. Matter Editorial receipt 25 May 200

    Weakly nonlinear waves in magnetized plasma with a slightly non-Maxwellian electron distribution. Part 2, Stability of cnoidal waves

    Get PDF
    We determine the growth rate of linear instabilities resulting from long-wavelength transverse perturbations applied to periodic nonlinear wave solutions to the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation which governs weakly nonlinear waves in a strongly magnetized cold-ion plasma whose electron distribution is given by two Maxwellians at slightly different temperatures. To obtain the growth rate it is necessary to evaluate non-trivial integrals whose number is kept to a minimum by using recursion relations. It is shown that a key instance of one such relation cannot be used for classes of solution whose minimum value is zero, and an additional integral must be evaluated explicitly instead. The SKdVZK equation contains two nonlinear terms whose ratio b increases as the electron distribution becomes increasingly flat-topped. As b and hence the deviation from electron isothermality increases, it is found that for cnoidal wave solutions that travel faster than long-wavelength linear waves, there is a more pronounced variation of the growth rate with the angle θ at which the perturbation is applied. Solutions whose minimum values are zero and which travel slower than long-wavelength linear waves are found, at first order, to be stable to perpendicular perturbations and have a relatively narrow range of θ for which the first-order growth rate is not zero

    Investigation of the nonlocal coherent-potential approximation

    Full text link
    Recently the nonlocal coherent-potential approximation (NLCPA) has been introduced by Jarrell and Krishnamurthy for describing the electronic structure of substitutionally disordered systems. The NLCPA provides systematic corrections to the widely used coherent-potential approximation (CPA) whilst preserving the full symmetry of the underlying lattice. Here an analytical and systematic numerical study of the NLCPA is presented for a one-dimensional tight-binding model Hamiltonian, and comparisons with the embedded cluster method (ECM) and molecular coherent potential approximation (MCPA) are made.Comment: 18 pages, 5 figure

    The Role of Projection in the Control of Bird Flocks

    Full text link
    Swarming is a conspicuous behavioural trait observed in bird flocks, fish shoals, insect swarms and mammal herds. It is thought to improve collective awareness and offer protection from predators. Many current models involve the hypothesis that information coordinating motion is exchanged between neighbors. We argue that such local interactions alone are insufficient to explain the organization of large flocks of birds and that the mechanism for the exchange of long-ranged information necessary to control their density remains unknown. We show that large flocks self-organize to the maximum density at which a typical individual is still just able to see out of the flock in many directions. Such flocks are marginally opaque - an external observer can also just still see a substantial fraction of sky through the flock. Although seemingly intuitive we show that this need not be the case; flocks could easily be highly diffuse or entirely opaque. The emergence of marginal opacity strongly constrains how individuals interact with each other within large swarms. It also provides a mechanism for global interactions: An individual can respond to the projection of the flock that it sees. This provides for faster information transfer and hence rapid flock dynamics, another advantage over local models. From a behavioural perspective it optimizes the information available to each bird while maintaining the protection of a dense, coherent flock.Comment: PNAS early edition published online at http://www.pnas.org/cgi/doi/10.1073/pnas.140220211

    Electric field generation by the electron beam filamentation instability: Filament size effects

    Full text link
    The filamentation instability (FI) of counter-propagating beams of electrons is modelled with a particle-in-cell simulation in one spatial dimension and with a high statistical plasma representation. The simulation direction is orthogonal to the beam velocity vector. Both electron beams have initially equal densities, temperatures and moduli of their nonrelativistic mean velocities. The FI is electromagnetic in this case. A previous study of a small filament demonstrated, that the magnetic pressure gradient force (MPGF) results in a nonlinearly driven electrostatic field. The probably small contribution of the thermal pressure gradient to the force balance implied, that the electrostatic field performed undamped oscillations around a background electric field. Here we consider larger filaments, which reach a stronger electrostatic potential when they saturate. The electron heating is enhanced and electrostatic electron phase space holes form. The competition of several smaller filaments, which grow simultaneously with the large filament, also perturbs the balance between the electrostatic and magnetic fields. The oscillations are damped but the final electric field amplitude is still determined by the MPGF.Comment: 14 pages, 10 plots, accepted for publication in Physica Script

    On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy

    Get PDF
    Titanium is commonly added to nickel superalloys but has a well-documented detrimental effect on oxidation resistance. The present work constitutes the first atomistic-scale quantitative measurements of grain boundary and bulk compositions in the oxide scale of a current generation polycrystalline nickel superalloy performed through atom probe tomography. Titanium was found to be particularly detrimental to oxide scale growth through grain boundary diffusion
    corecore