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Abstract. The equations describing planar magnetoacoustic waves of permanent
form in a cold plasma are rewritten so as to highlight the presence of a naturally
small parameter equal to the ratio of the electron and ion masses. If the magnetic
field is not nearly perpendicular to the direction of wave propagation, this allows
us to use a multiple-scale expansion to demonstrate the existence and nature of
nonlinear wave solutions. Such solutions are found to have a rapid oscillation
of constant amplitude superimposed on the underlying large-scale variation. The
approximate equations for the large-scale variation are obtained by making an
adiabatic approximation and in one limit, new explicit solitary pulse solutions are
found. In the case of a perpendicular magnetic field, conditions for the existence
of solitary pulses are derived. Our results are consistent with earlier studies which
were restricted to waves having a velocity close to that of long-wavelength linear
magnetoacoustic waves.

1. Introduction
For a plasma composed of cold electrons and a single species of cold ions, both
collisions and Landau damping can be neglected with the result that a two-fluid
model provides an accurate description (Kakutani et al. 1968). Such a model is
governed by the continuity and momentum equations for electrons and ions, and
Maxwell’s equations. In the study of non-relativistic hydromagnetic waves with a
frequency much less than the plasma frequency, these equations may be simplified
somewhat by neglecting the displacement current and taking the number densities
of electrons and ions to be equal, except in Poisson’s equation (Kakutani et al.
1967). Then, taking all quantities to be independent of y and z, one arrives at a
set of equations governing planar hydromagnetic waves. Il’ichev (1996) integrates
these to obtain the following equations for a magnetoacoustic wave of permanent
form propagating in the x-direction at a constant speed V :

dv

dξ
= −Ri cos θ

V
nw− RiBz, (1.1a)

dw

dξ
=

Ri cos θ

V
nv+ RiB̂y + Ri sin θ(1 − n), (1.1b)

dB̂y

dξ
= Renw+

Re cos θ

V
nBz, (1.1c)
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dBz

dξ
= −Renv− Re cos θ

V
nB̂y, (1.1d)

where ξ = x − V t,

1
n

= 1 − 1
2V 2

(B̂2
y + 2B̂y sin θ + B2

z), (1.2)

B̂y = By − sin θ, (1.3)

and θ is the angle between the equilibrium magnetic field and the x-axis. In the
above equations, ξ, the ion density n, the y and z components of the ion drift
velocity v and w, and the magnetic field (Bx, By, Bz) are normalized, respectively,
by the characteristic length l, the equilibrium ion density, the Alfvén velocity VA,
and the equilibriummagnetic field strength. In such units the speed of a linear long-
wavelength magnetoacoustic wave is unity. The remaining parameters are defined
by Ri = ωcil/VA and Re = ωcel/VA where ωci and ωce are the ion and electron
cyclotron frequencies, respectively. The values of the dependent variables in the
absence of a wave are zero for v, w, B̂y, and Bz, and unity in the case of n.
The results we present here originate from our observation that (1.1) may be

rewritten so as to include a small parameter, ε. After introducing the variable
s ≡ Reξ/V̄ , where V̄ = V sec θ, the equations take the form

dv

ds
= −ε{nw + V̄ Bz}, (1.4a)

dw

ds
= ε{nv+ V̄ B̂y + V tan θ (1 − n)}, (1.4b)

dB̂y

ds
= n{V̄ w + Bz}, (1.4c)

dBz

ds
= −n{V̄ v + B̂y}, (1.4d)

where ε ≡ Ri/Re is simply the ratio of the electron and ion masses. With ε ∼ 10−3

or smaller, any analytical treatment should make use of the smallness of this para-
meter and some form of perturbation theory is obviously called for. Furthermore,
even a purely numerical method of solution should attempt to take advantage of the
smallness of ε as otherwise it means integrating over many small-scale variations
before the underlying variation on the large scale takes place.
From (1.4) it can be seen that generally v and w change on a much slower scale

than B̂y and Bz. It is therefore natural to make an adiabatic approximation (see
Haken (1983)) which is equivalent to equating the right-hand sides of (1.4c) and
(1.4d) to zero. This gives

Bz = −V̄ w, B̂y = −V̄ v. (1.5)

These relationships can be used to eliminate B̂y and Bz and it is shown in Ap-
pendix A that all the dependent variables can be expressed in terms of a single
variable which itself satisfies a Newtonian-type energy equation with a polynomial
Sagdeev potential. This equation is then used to show the existence of solitary pulses
and nonlinear waves on the larger scale. However, it should be stressed that the very
nature of the adiabatic approximation as used here is to eliminate any variation
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on the smaller scale. Furthermore, the class of solutions to (1.4) is restricted, in
view of relationships (1.5), which implies that at some particular value of s the
corresponding values of (Bz, w) and (B̂y, v) are not independent.
It is the purpose of this paper to construct a perturbation expansion based on the

smallness of ε which allows one to put the adiabatic approximation in context and
to allow for rapid oscillations on the small scale. These effects have been studied
analytically in Il’ichev (1996) and later numerically by Bakholdin and Il’ichev
(1998) and Bakholdin et al. (2002). However, those studies were only carried out
for the case V = 1+µ/2 where µ is small. In the present paper, the analytic theory
based on the smallness of ε, a naturally small parameter, clearly shows the origin
of all the basic features of the solutions they obtain and is not restricted to small µ.
The underlying form of the governing equations suggests that a multiple-scale

perturbation expansion is appropriate and this is carried out in Sec. 2 where explicit
equations are obtained that describe the evolution of v, w, B̂y, and Bz on both the
small and large scale to lowest significant order in ε. This analysis is only valid
when cos θ is not small. For θ close to ±π/2 singularities develop in (1.4) and so
an alternative set of variables and equations derived from (1.1) must be employed,
as is shown in Sec. 3. The final section summarizes our results and the further
applicability of our approach is discussed.

2. Multiple-scale perturbation expansion
The perturbation expansion is based on the implication from equations (1.4) that
two distinct spatial scales exist—a large and a small scale. We formally proceed
by introducing multiple scales, s, s1 = εs, s2 = ε2s, . . . and treating them as
independent variables so that

d

ds
=

∂

∂s
+ ε

∂

∂s1
+ ε2 ∂2

∂s2
2

+ · · · ,

and allowing all dependent variables f to be functions of s, s1, . . . and expressible
in the form

f(s) = f0(s, s1, . . . ) + εf1(s, s1, . . . ) + · · · ,

although in the following it is not necessary to consider the scaled variables beyond s
(the small scale) and s1 (the large scale). For a more general introduction to
this form of perturbation theory see, for example, Nayfeh and Mook (1979) and
Rowlands (1990).
Substituting the above form for the dependent variables into (1.4a) and (1.4b)

gives, to lowest order,
∂v0

∂s
= 0,

∂w0

∂s
= 0,

and so v0 and w0 can only be functions of s1, and not s. At lowest order, (1.4c) and
(1.4d) reduce to

∂B̂y0

∂s
= n0{V̄ w0 + Bz0}, ∂Bz0

∂s
= n0{V̄ v0 + B̂y0}. (2.1)

Since v0 and w0 are independent of s, the solution of these equations is

B̂y0 = hy − V̄ v0, Bz0 = hz − V̄ w0, (2.2)
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where
∂hy

∂s
= n0hz,

∂hz

∂s
= −n0hy.

These equations have the solution

hy = h(s1) sin φ, hz = h(s1) cos φ, (2.3)

where
∂φ

∂s
= n0 (2.4)

and h(s1) is an as yet to be determined function of s1. Substituting the above results
into (1.2) gives, to this approximation,

1
n0

= A + D(s1) cos φ + E(s1) sin φ (2.5)

where

A = 1 +
2V tan θ v0 − V̄ 2(w2

0 + v2
0) − h2

2V 2
(2.6)

and

D =
V̄ hw0

V 2
, E =

(V̄ v0 − sin θ)h
V 2

.

Thus A, D, and E are functions of s1 only and the s variation of n0 is through φ
only. Integrating the reciprocal of (2.4) after using (2.5) to express n0 in terms of
φ yields

Aφ + D sinφ − E cos φ = s − s̃(s1) (2.7)

where s̃ is a function of s1. A solution of (2.7) in the form φ = φ(s, s1) is obtained
in Appendix B.
We now proceed to the next order of approximation and find using (1.4a) that

∂v1

∂s
= −dv0

ds1
− n0w0 + V̄ 2w0 − V̄ h cos φ. (2.8)

Since the right-hand side depends on s via φ only, we replace ∂v1/∂s by n0∂v1/∂φ.
Remembering that v0, w0 and h are independent of φ, and using (2.5), (2.8) is
readily integrated to give

v1 =
(

V̄ 2w0 − dv0

ds1

)
(Aφ + D sin φ − E cos φ) − w0φ

+ V̄ h

(
E

4
cos 2φ − D

4
(2φ + sin 2φ) − A sin φ

)
+ ṽ(s1) (2.9)

where ṽ(s1) is an undetermined function. To ensure that v1 is a bounded function
of s, we must remove terms proportional to φ. After replacing D by its definition
this results in the consistency condition

A
dv0

ds1
=

(
AV̄ 2 − 1 − V̄ 2h2

2V 2

)
w0. (2.10)
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This is the equation for the variation of v0 on the slowly varying scale, s1. Using
(2.10) to simplify (2.9) leaves us with

v1 =
1
A

(
w0 +

V̄ hD
2

)
(D sinφ − E cos φ) + V̄ h

(
E

4
cos 2φ − D

4
sin 2φ − A sin φ

)
,

(2.11)
in which ṽ has been absorbed into v0.
Similarly, to first order, (1.4b) yields

∂w1

∂s
= −dw0

ds1
+ n0v0 − V̄ 2v0 + V̄ h sin φ + V tan θ(1 − n0). (2.12)

After again replacing ∂/∂s by n0∂/∂φ and integrating, to obtain a bounded w1 we
require that

A
dw0

ds1
=

(
1 − AV̄ 2 +

V̄ 2h2

2V 2

)
v0 + V tan θ

(
A − 1 − h2

2V 2

)
, (2.13)

with the result that

w1 =
1
A

(
V tan θ − v0 − V̄ hE

2

)
(D sin φ − E cos φ)

− V̄ h

(
A cos φ +

D

4
cos 2φ +

E

4
sin 2φ

)
. (2.14)

To lowest order, the adiabatic approximation (1.5) is

Bz0 = −V̄ w0, B̂y0 = −V̄ v0. (2.15)

Comparison with (2.2) shows that this approximation is equivalent to setting h = 0.
Equations (2.10) and (2.13) then form a complete set that can be integrated. The
details are given in Appendix A. In particular, the existence of solitary pulses is
proven.
If the adiabatic approximation is not made, it is necessary to obtain an equation

for the variation of h on the s1 scale. This is achieved by considering the equations
for B̂y and Bz to next order in ε. From (1.4c) and (1.4d) we may write, respectively,

∂B̂y1

∂s
+

∂B̂y0

∂s1
= n0{V̄ w1 + Bz1} + n1h cos φ,

∂Bz1

∂s
+

∂Bz0

∂s1
= −n0{V̄ v1 + B̂y1} − n1h sin φ.

Since the variation of all coefficients with s is through φ, we replace ∂/∂s by n0∂/∂φ
and rewrite the above equations as

∂B̂y1

∂φ
+

1
n0

∂B̂y0

∂s1
= V̄ w1 + Bz1 +

n1h

n0
cos φ, (2.16a)

∂Bz1

∂φ
+

1
n0

∂Bz0

∂s1
= −V̄ v1 − B̂y1 − n1h

n0
sin φ. (2.16b)

We proceed by adding (2.16a) multiplied by sin φ to (2.16b) multiplied by cos φ and
then integrating from 0 to 2π. Insisting that B̂y1 and Bz1 are periodic functions of
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φ means that〈
∂B̂y1

∂φ
sinφ

〉
= −〈B̂y1 cos φ〉,

〈
∂Bz1

∂φ
cos φ

〉
= 〈Bz1 sinφ〉,

where 〈·〉 denotes the average as φ varies from 0 to 2π. The combined equations
then reduce to the following equation for the variation of h:〈

1
n0

〉
dh

ds1
= V̄

{
dv0

ds1

〈
sin φ

n0

〉
+

dw0

ds1

〈
cos φ

n0

〉
+ 〈w1 sinφ〉 − 〈v1 cos φ〉

}
. (2.17)

Using (2.5), (2.11), and (2.14) we have〈
1
n0

〉
= A,

〈
sin φ

n0

〉
=

E

2
,

〈
cos φ

n0

〉
=

D

2
,

〈w1 sin φ〉 =
(

V tan θ − v0 − V̄ hE
2

)
D

2A
, 〈v1 cos φ〉 = −

(
1 +

V̄ 2h2

2V 2

)
Ew0

2A
.

Then inserting the above expressions and results (2.10) and (2.13) into (2.17) and
simplifying we find that the right-hand side of (2.17) is zero and hence that h is a
constant. This is in agreement with the result obtained for V close to 1 in Il’ichev
(1996).
In summary, we have seen that to lowest order, the ion drift velocity components

v and w only show large-scale variation. Fast periodic variation occurs at the next
order of approximation, as given by (2.11) and (2.14), but given the smallness of
ε, these oscillations would be barely discernible. On the other hand, even to lowest
order, the magnetic field components show rapid oscillations on top of the large-
scale variation:

B̂y0 = −V̄ v0(s1) + h sin φ(s, s1), Bz0 = −V̄ w0(s1) + h cos φ(s, s1),

where, as is shown in Appendix B, sin φ and cos φ are periodic functions of the
variable S given by (B 3).

3. The small cosθ and θ = ±π/2 limits
So far we have treated cos θ as finite but our treatment does not allow one to pass
to the case cos θ = 0 since in this limit V̄ becomes infinite. To consider this limit we
write θ = ±π/2 ∓

√
εψ so that cos θ = sin(

√
εψ) �

√
εψ. (In the remainder of this

section the upper and lower signs refer to the cases where θ is in the neighbourhood
of π/2 and −π/2, respectively.) It is now necessary to go back to the original
equations expressed in terms of ξ rather than s and define X ≡

√
RiReξ. Also, to

avoid singular solutions we need to use scaled versions of the ion drift velocities,
defined by v̄ = v/

√
ε and w̄ = w/

√
ε. Then dividing (1.1) by

√
RiRe we obtain

dv̄

dX
= −Bz + O(εψ), (3.1a)

dw̄

dX
= B̂y ± 1 − n + O(εψ2), (3.1b)

dB̂y

dX
= nw̄ +

nBz

V
ψ + O(εψ3), (3.1c)
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dBz

dX
= −nv̄ − nB̂y

V
ψ + O(εψ3) (3.1d)

with
1
n

= 1 − 1
2V 2

(B̂2
y ± 2B̂y + B2

z) + O(εψ2). (3.2)

Any solution to the above equations will be such that v̄ ∼ B and hence the real
velocity v =

√
εv̄ will be small compared to B.

For the θ = ±π/2 limits, (3.1) reduces to

dv̄

dX
= −Bz,

dBz

dX
= −nv̄, (3.3a)

dw̄

dX
= B̂y ± 1 − n,

dB̂y

dX
= nw̄. (3.3b)

We now define an operator L by

Lf ≡ d

dX

(
1
n

df

dX

)
.

Then from (3.3a) and (3.3b) it can be seen that, respectively,

LBz = Bz, (3.4a)

LBy = By − n, (3.4b)

in which we have re-instated By, as given in (1.3). Combining (3.4a) and (3.4b) gives

ByLBz − BzLBy = Bzn.

Integrating this over one period (or all X if boundary conditions permit) yields

〈Bzn〉 = 0, (3.5)

where 〈·〉 denotes the integral over X. Similarly, (3.4a) and (3.4b) imply that

〈Bz〉 = 0, 〈By〉 = 〈n〉. (3.6)

Relations (3.5) and (3.6) are satisfied if n and By are even functions and Bz is an
odd function of X.
We can demonstrate the existence of a non-trivial solution of (3.3) by taking

Bz = 0. In this case (3.2) becomes

1
n

= α(1 − βB2
y)

where

α = 1 +
1

2V 2
, β =

1
1 + 2V 2

, (3.7)

with the result that (3.4b) can be re-expressed as

α
d

dX

(
(1 − βB2

y)
dBy

dX

)
= By − 1

α(1 − βB2
y)

.

Letting p = dBy/dX, this can be written as the following first-order differential
equation for p2:

dp2

dBy
−

(
4βBy

1 − βB2
y

)
p2 =

2
α

(
By

1 − βB2
y

− 1
α(1 − βB2

y)2

)
,
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which has an integrating factor of (1 − βB2
y)2. Hence the solution is given by

p2 =
2Q

α(1 − βB2
y)2

(3.8)

where

Q =
B2

y

2
−

βB4
y

4
− By

α
+ Q0 (3.9)

and Q0 is an integration constant. For a solitary pulse solution, the appropriate
boundary conditions are By → ±1 and Q → 0 as |X | → ∞. Using these allows us
to determine Q0. We then rewrite (3.9) as the following expansion in B̂y:

Q = B̂2
y

{
1 − 3β

2
∓ βB̂y − β

4
B̂2

y

}
. (3.10)

A necessary condition for the existence of solitary pulses is therefore that β < 1/3.
In addition, from (3.8) it can be seen that p is singular at B2

y = 1/β. Hence, for a
solitary pulse to exist, at least one of the two non-trivial zeros of the expression
for Q given in (3.10) must lie within the range −1/

√
β ∓ 1 < B̂y < 1/

√
β ∓ 1.

The zero that is larger in magnitude never satisfies this. The remaining zero at
±

√
2/β − 2 ∓ 2 satisfies the condition if β > 1/9. Using (3.7) we can now write the

sufficient condition for the existence of a solitary pulse solution as 1 < V 2 < 4.
As a check on our calculation we look at the case when V = 1 + µ/2 for small

positive µ. Then (3.8) reduces to
(

dB̂y

dX

)2

=
B̂2

y

4
(B̂y ± 4)(±µ − B̂y)

to lowest order in µ. The above equation has the solution

B̂y = ±µ sech2 1
2

√
µ(X − X0) + O(µ2)

where X0 is an arbitrary constant. This is in agreement with the result given in
Bakholdin and Il’ichev (1998).

4. Conclusions
Wehave studied a set of magnetohydrodynamic equations for planarmagnetoacous-
tic waves of permanent form propagating in a two-component cold plasma and, by
taking advantage of the smallness of the ratio of the electron to ion masses, have
obtained a reduced set of equations that describe the large-scale variation of the
magnetoacoustic wave solution of the full equations. Superimposed on the large-
scale variation, multiple-scale perturbation analysis indicates that there is a rapid
oscillation which is of constant amplitude in the case of the lowest-order magnetic
field components. These results are consistent with the study of Ilichev (1996),
which was restricted to a narrow range of velocities. In addition, the approach
expounded in this paper puts the adiabatic approximation into its true context.
In this work we have obtained various conditions for the existence of solitary

pulses. Whether these solutions correspond to phenomena that could occur in
nature depends on whether they are stable. The linear stability analysis of the
solutions shown to exist in this paper is a challenging problem. However, the
numerical solution of the full (time-dependent) system of equations obtained by
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Bakholdin and Il’ichev (1998), show that for a range of initial conditions the
solution relaxes to the type of solution shown to exist here. This suggests that our
solutions are stable, at least to perturbations applied in the direction of propagation.
Although the equations studied here arise from a magnetohydrodynamics prob-

lem, the method is applicable to a more general set of nonlinear equations where
two distinct scales are a basic feature. An advantage of the present study is that the
equations obtained on the large scale can be investigated analytically and describe
real physical processes. Although we have only looked at cold plasmas, an exactly
analogous procedure can be applied to the case of warm plasmas, at the expense of
some additional algebraic complexity. The relevant governing equations are given
in Bakholdin et al. (2002).
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Appendix A. Adiabatic approximation
When h = 0, the coupled equations for v0 and w0, namely (2.10) and (2.13),
reduce to

dv0

ds1
=

(
V̄ 2 − 1

A

)
w0 (A 1)

and
dw0

ds1
=

(
1
A

− V̄ 2

)
v0 + V tan θ

(
1 − 1

A

)
. (A 2)

Multiplying (A 1) and (A 2) by 2v0 and 2w0, respectively, and adding gives

d

ds1
(v2

0 + w2
0) = 2V tan θ

(
1 − 1

A

)
w0. (A 3)

Differentiating (2.6) with respect to s1 and using the above, one obtains

dA

ds1
=

(V̄ 2 − 1) tan θ

V

w0

A
,

or, provided that V̄ 2 
= 1,

w0 =
A

κ

dA

ds1
, κ =

(V̄ 2 − 1) tan θ

V
. (A 4)

Substituting (A 4) into (A 3) and (A 1) and integrating yields, respectively,

v2
0 + w2

0 = C1 + V κ−1 tan θ(A2 − 2A) (A 5)

and

v0 = C2 + κ−1( 1
2 V̄ 2A2 − A) (A 6)

where C1 and C2 are integration constants. Finally, after combining (A 4), (A 5)
and (A 6) one obtains (

A
dA

ds1

)2

=
4∑

m=0

γmAm (A 7)
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1

2

A

dA
ds(  )

Figure A.1. Phase plane for (A 8) when conditions are such that both compressive and
rarefactive solitary pulses occur.

in which

γ0 = (C1 − C2
2 )κ2, γ1 = 2(C2 − V tan θ)κ, γ2 = (V tan θ − C2V̄

2)κ − 1,

γ3 = V̄ 2, γ4 = − 1
4 V̄ 4.

This is of the form of the energy equation of a particle with position A in a Sagdeev
potential which is minus the right-hand side of (A 7). In general, nonlinear waves
and, in particular, solitary pulses exist. The latter can occur when the boundary
conditions are such that v → 0, w → 0, and n → 1 as s1 → ±∞. Using the result
that in this limit A → 1, the boundary conditions allow us to use (A 5) and (A 6) to
determine the integration constants which in this case are

C1 = V κ−1 tan θ, C2 = (1 − 1
2 V̄ 2)κ−1.

Then (A 7) reduces to (
A

dA

ds1

)2

=
(A − 1)2

4
(a + bA+ cA2) (A 8)

where

a = 4(V̄ 2 − 1) tan2 θ − (V̄ 2 − 2)2, b = 2V̄ 2(2 − V̄ 2), c = −V̄ 4.

The requirement that (A 8) gives rise to a solitary pulse is that a+ b+ c > 0. Using
the above renders this condition as (V̄ 2 − 1)(1 − V 2) > 0 which on rearranging
yields

cos2 θ < V 2 < 1.

As illustrated in Fig. A.1, since c < 0, if the above condition is satisfied, compressive
solitary pulses will always occur. However, rarefactive pulses are only possible if the
smaller root of a + bA+ cA2 = 0 is above zero. This will occur if a < 0 and V̄ 2 < 2.
These requirements are equivalent to the condition

V 2 < 2(1 − |sin θ|).

This implies that if the values of V and θ are such that compressive pulses exist,
then rarefactive pulses will also occur if |θ| � π/6.
It is possible to integrate (A 8) to obtain the spatial variation of the solitary

pulses implicitly. An approximate explicit solution can be obtained when V̄ 2 is just
above 1. Introducing U ≡ A − 1, (A 8) becomes(

dU

ds1

)2

=
V̄ 4U2(U+ − U)(U − U−)

(1 + U)2
(A 9)
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where

U± =
2
√

V̄ 2 − 1
V̄ 2

(
± tan θ −

√
V̄ 2 − 1

)
.

If
√

V̄ 2 − 1 � |tan θ|, then U± � ±ν where

ν =
2
√

V̄ 2 − 1 tan θ

V̄ 2
.

For solitary pulse solutions, |U | < |U±|, and so if tan θ is of order unity, U � 1.
Hence (A 9) reduces to

dU

ds1
= U

√
ν2 − U2

at lowest order and one obtains

A � 1 ± ν sech νs1. (A 10)

Using (A 4) and (A 6) we can then obtain the corresponding expressions for w0

and v0:

w0 � ∓4V tan θ sech νs1 tanh νs1, v0 � 2V tan θ sech2 νs1. (A 11)

In this adiabatic approximation, the lowest-order components of the magnetic field
are just multiples of these quantities, as given by (2.15).
We can now also use (A 10) and (A 11) to obtain the solution when V̄ 2 = 1. This

corresponds to the limit ν → 0 in which case A → 1, w0 → 0, and v0 → 2V tan θ.
As a check on our calculation, we note that these results are consistent with the
definition of A as given by (2.6) when h = 0.

Appendix B. Explicit expression for φ(s, s1)
The variation of φ with s is given implicitly by (2.7). An explicit expression can be
obtained by writing the equation in the form

S + ψ = φ + ψ − σ sin(φ + ψ) (B 1)

where S = (s − s̃)/A, ψ = arg(−D + iE) and σ =
√

D2 + E2/A. The following
explicit solution to (B 1) was first obtained by Jackson (1960) (although for a more
transparent exposition see p.154 of Infeld and Rowlands (2000)):

φ = S + 2
∞∑

m=1

Jm(mσ)
m

sin m(S + ψ). (B 2)

It can be seen that φ has a directed component, S, on which a periodic variation is
superimposed. Since A and hence the period vary on the s1 scale, to the order in ε
to which (B 2) applies, it is more appropriate to redefine S by

S =
∫ s

s̃

ds′

A(εs′)
. (B 3)

Such a definition avoids secular terms at higher orders in the ε expansion.
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