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Abstract. We derive the approximate form and speed of a solitary-wave
solution to a perturbed KdV equation. Using a conventional perturbation
expansion, one can derive a first-order correction to the solitary-wave speed,
but at the next order, algebraically secular terms appear, which produce
divergences that render the solution unphysical. These terms must be treated by
a regrouping procedure developed by us previously. In this way, higher-order
corrections to the speed are obtained, along with a form of solution that is
bounded in space. For this particular perturbed KdV equation, it is found that
there is only one possible solitary wave that has a form similar to the
unperturbed soliton solution.

Dedication

The authors would like to dedicate this paper to John Dougherty on the
occasion of his 65th birthday. G.R. in particular would like to thank him for his
friendship over the years and for his major contribution as editor of this journal
to a maintenance of standards. The present paper has its origins in a paper
(Rowlands 1969) that was originally rejected by J.D. but eventually accepted
after a lot of soul searching on the part of G.R. In this case, the final decision
of the editor proved to be correct.

1. Introduction

The Korteweg–de Vries (KdV) equation

u
t
uu

x
u

xxx
¯ 0, (1)

in which u is the normalized ion density, governs weakly nonlinear one-
dimensional waves in an ion-acoustic plasma (Infeld and Rowlands 2000). The
single-soliton solution to this equation takes the form

u
!
(x, t)¯ 12η# sech#[η(x®4η#t)], (2)

where η is an arbitrary real quantity. Since the discovery that the KdV
equation is integrable and so can be solved by an inverse scattering transform
(Gardner et al. 1967), its general solution has been studied in great detail.
However, the KdV equation is of course an approximation – in its derivation,
higher-order terms and dissipation have been neglected. In particular, it only
applies to a uniform background plasma.

Chang et al. (1986) have shown that in the presence of a non-uniform plasma
whose concentration varies linearly in the direction of propagation of the wave,
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if the gradient is small then the system is described by the KdV equation with
a small extra linear term εαu on the right-hand side. A positive εα means a
concentration increasing in the direction of the wave. In this case, the solitary-
wave amplitude increases as it propagates.

In this paper, we consider a non-uniform plasma in which there is also
dissipation. These effects result in the perturbed KdV equation

u
t
uu

x
u

xxx
¯ εαuεβu

xx
, (3)

where ε is small. Using inverse scattering techniques, the evolution of the single-
soliton solution (2) in the presence of perturbations such as the above can be
analysed (Kivshar and Malomed 1989). In particular, Karpman and Maslov
(1978) looked at the case where β3 0, and found that the original soliton
changes speed and shape, and forms a long tail at the end of which there are
small oscillations in time and space. Here we shall instead look for solitary-wave
solutions that propagate without changing form. We expect to find these, since
if α and β are both positive then the first term on the right-hand side of (3) leads
to wave steepening, while the other dissipative term will result in a decrease in
amplitude. Just as a soliton results from a balance between nonlinearity and
dispersion, the solitary-wave solution we are looking for would also require that
the effects of the perturbing terms on the shape cancel each other out.

On performing a small-ε expansion about the unperturbed solution, at first
order we find two types of secular terms – exponentially secular terms, which
must be removed by choice of η, and what we refer to as algebraically secular
terms. The latter are terms that tend to a polynomial in x for large x and
therefore do not vanish at infinity. In Allen and Rowlands (1993), where a
problem concerning the linear stability of solitary pulses was studied, a method
was developed for dealing with such terms. The method involved regrouping
certain terms at all orders to obtain a function that vanishes at infinity and has
the correct asymptotic form. In the next section, we describe the application of
the method to this problem and find the form and speed of the solitary-wave
solution.

2. Perturbation analysis

We first transform the equation to one in reduced variables in a reference frame
in which the solitary wave with speed v is stationary by making the change of
variables

x«¯ η(x®vt), t«¯ η$t, u«¯
u

η#

and putting

va ¯
v

η#

, αa ¯
α

η$

, βa ¯
β

η
.

As the solitary waves we are looking for are stationary in this frame, we drop
the time dependence. Also dropping the primes and bars leaves us with

(u®v)u
x
u

xxx
¯ εαuεβu

xx
. (4)

We look for solutions with a form given by the expansion

u(x)¯u
!
(x)εu

"
(x)… (5)
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and speed
v¯ 4εv

"
ε#v

#
… . (6)

We first need to consider the asymptotic behaviour of the solution. As
xU³¢, (4) reduces to

d$u

dx$

®εβ
d#u

dx#

®(4εv
"
)
du

dx
®εαu¯ 0 (7)

for small ε. This has solutions epix, where the p
i
are real and to first order in ε

are given by

p
"
¯ 2®"

)
(α4β2v

"
) ε, p

#
¯®2"

)
(α4β®2v

"
) ε, p

$
¯®"

%
εα.

Hence physically acceptable solutions of (4) must decay as e#x to lowest order as
xU®¢, and, for large positive x, there will be a slowly decaying exponential
in addition to the e−#x terms. Note that since the p

i
are real, the solution u does

not have spatial oscillations as rxrU¢.
In a conventional perturbation expansion in ε, the slowly decaying

exponential behaviour will give rise to algebraically secular terms. The present
method is essentially to treat such terms separately from all others and
eventually regroup to give the correct asymptotic behaviour, namely
exponential decay, as xU¢.

After substituting (5) and (6) into (4), to zeroth order in ε, we obtain the
unperturbed equation in the rest frame of the soliton,

u
!xxx

(u
!
®4)u

!x
¯ 0, (8)

which has the solution
u
!
¯ 12 sech# x. (9)

To find u
"
, we write the first-order equation in the form

d

dx
Lu

"
¯αu

!
βu

!xx
v

"
u
!x

, (10)

where

L3
d#

dx#

u
!
®4.

To ensure the correct asymptotic form, integrations must be performed
between the limits ®¢ and x, and hence the inverse of L is given by

L−"R(x)3#
!
(x)&x !x«

−¢ R(x§)#
!
(x§) dx§

##
!
(x«)

dx«, mod #
!
(x), (11)

with #
!
(x)¯ sech# x tanh x. (The mod #

!
is used to remove #

!
terms, which are

unwanted since L#
!
¯ 0.) Integrating (10), we obtain

Lu
"
¯ 12α(tanh x1)®24β sech# x tanh x12v

"
sech# x,

and then applying L−" gives

u
"
¯ ("

#
α®#

&
β) e#x®"#

&
β(tanh x1)($

#
α6β3v

"
) (sech# x®x sech# x tanh x).

(12)
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The first term is exponentially secular, and must be removed by choosing

βa ¯ &
%
α- , (13)

where we have momentarily reinstated the bars. (This is equivalent to the usual
consistency condition applied to (10).) Referring back to the definitions of α- and
β- we see that this is equivalent to a condition on the soliton parameter:

η¯ 04β

5α1
"/#

. (14)

Since η must be real, a solitary wave can only exist if α and β have the same
sign. If α and β are of opposite signs, both perturbations will result in reduction
or augmentation of the wave amplitude, and no wave of permanent form is
possible. In addition, if β3 0 as in Karpman and Maslov (1978), there is no
solitary-wave solution.

Substituting (13) into (12), we obtain

u
"
¯®3α(tanh x1)3(3αv

"
) (sech# x®x sech# x tanh x). (15)

The first term is an algebraically secular term. However, owing to the correct
choice of the limits of integration in (11) and when integrating (10), it has the
correct underlying asymptotic form, vanishing as xU®¢ and tending to a
constant as xU¢, since p

$
¯ 0 to lowest order.

To next order, we obtain

d

dx
Lu

#
¯αu

"
βu

"xx
®

1

2

d

dx
u#
"
v

"
u
"x

v
#
u
!x

. (16)

At this point, it is helpful to introduce the functions A
n
(x), defined by

A
n
(x)¯&x

−¢

A
n−"

(x«) dx«, A
!
(x)¯ tanh x1, (17)

from which we have

A
"
(x)¯ ln(1e−#x)2x,

A
#
(x)¯ "

#
Li

#
(®e−#x)x# "

"#
π#,

in which Li
n
(z) is the polylogarithmic function (Wolfram 1991). On considering

the asymptotic behaviour of A
!
(x) for large rxr, it follows from the definition

that the asymptotic behaviour of the A
n
(x) to leading order is given by

[A
n
(x)]

xU−¢ D 2"−ne#x, (18)

[A
n
(x)]

xU+¢ D
2

n !
xn. (19)

From the above, we see that any term proportional to A
n
(x) is an algebraically

secular term with the correct underlying asymptotic form for this problem.
After integrating (16) and then using Mathematica (Wolfram 1991) to apply

(11), we obtain an expression for u
#

with an exponentially secular term

® "
"'

α(9α2v
"
) e#x.
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We must therefore choose
v
"
¯®*

#
α (20)

to remove it. This leaves us with

u
#
¯α#[$

%
A

"
(x)® *

"'
A

!
(x)*

)
sech# x *

"'
x sech# x#(

$#
x# sech# x

®*
%
A

"
(x) sech# x®)"

'%
x# sech% x® *

'%
x sech# x tanh x

*
%
A

#
(x) sech# x tanh x]3v

#
(sech# x®x sech# x tanh x). (21)

To demonstrate the regrouping of algebraic secular terms and obtain the
second-order correction to the speed of the solitary wave, we proceed to third
order:

d

dx
Lu

$
¯αu

#
βu

#xx
®

d

dx
(u

"
u
#
)v

"
u
#x

v
#
u
"x

v
$
u
!x

. (22)

A lengthy calculation using Mathematica yields an expression for u
$

with over
40 terms. The parts of u

$
that do not vanish for large x are

"
#&'

α(27α#®32v
#
) e#x®α$[ $

"'
A

#
(x)

3v
#

8α#

A
"
(x)

 *
'%

xA
!
(x) *

'%
(A

"
(x) e−#x®1)®#!(

&"#
A

!
(x)].

The first term in this expression is the only exponentially secular one. It must
be removed by choosing

v
#
¯ #(

$#
α#. (23)

The remaining secular terms are all algebraic.
We are now ready to treat the algebraically secular terms. The leading

algebraically secular terms in the expansion up to third order can be written as

®3εα[A
!
(x)®"

%
εαA

"
(x)("

%
εα)#A

#
(x)]. (24)

Using (19), it can be seen that for large positive x, the above expansion is
proportional to the expansion of the slowly decaying asymptotic form ep$x. The
leading terms (24) also appear to be part of an expansion of a function
®3εα!(x), where

!(x)¯A
!
(x)®"

%
εα& x

−¢

A
!
(x«) dx«("

%
εα)#& x

−¢
& x«

−¢

A
!
(x§) dx« dx§

®…¯ 01"
%
εα& x

−¢

dx1−"A!
(x).

This is equivalent to the differential equation

d!(x)

dx
"

%
εα!(x)¯A

!
(x),

whose solution is

!(x)¯& x

−¢

A
!
(x«) e(εα/%)(x«−x) dx«. (25)

It can be seen that !(x) vanishes for large x. Hence the algebraic secular terms
(up to second order at least) have been regrouped to form a physically
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acceptable function. There are other algebraically secular terms at third order,
but it seems reasonable to assume that these can be regrouped with higher-
order terms in a similar manner.

Replacing the tanh x1 in u
"
by the function !(x), combining the results (9),

(15), (20) and (23), and then rewriting in terms of the original variables, we find
that the solitary wave has the form

u(x)¯ 012η#®
9

2

εα

η 1 sech# ηx®
3εα

η
!(ηx)

9

2
εαx sech# ηx tanh ηxO(ε#) (26)

and travels at a speed

v¯ 4η#®
9

2

εα

η


27

32

ε#α#

η%

O(ε$), (27)

where η is given by (14).

3. Conclusions

We have found the form and speed of a new solitary-wave solution to a
perturbed KdV equation. Whereas the unperturbed KdV equation has a one-
parameter family of one-soliton solutions (2), the perturbed equation admits
only one solution that is similar to the soliton solution for a given value of α
and β.

To arrive at a bounded solution, we have had to regroup algebraically secular
terms following an approach first developed in Allen and Rowlands (1993). The
method justifies using the simple consistency condition to give the lowest-order
value for v. It is applicable to any third- or higher-order soliton-bearing
equation (which is not necessarily integrable) with a perturbation of similar
form.
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