The filamentation instability (FI) of counter-propagating beams of electrons
is modelled with a particle-in-cell simulation in one spatial dimension and
with a high statistical plasma representation. The simulation direction is
orthogonal to the beam velocity vector. Both electron beams have initially
equal densities, temperatures and moduli of their nonrelativistic mean
velocities. The FI is electromagnetic in this case. A previous study of a small
filament demonstrated, that the magnetic pressure gradient force (MPGF) results
in a nonlinearly driven electrostatic field. The probably small contribution of
the thermal pressure gradient to the force balance implied, that the
electrostatic field performed undamped oscillations around a background
electric field. Here we consider larger filaments, which reach a stronger
electrostatic potential when they saturate. The electron heating is enhanced
and electrostatic electron phase space holes form. The competition of several
smaller filaments, which grow simultaneously with the large filament, also
perturbs the balance between the electrostatic and magnetic fields. The
oscillations are damped but the final electric field amplitude is still
determined by the MPGF.Comment: 14 pages, 10 plots, accepted for publication in Physica Script