31 research outputs found
The duration of diarrhea and fever is associated with growth faltering in rural Malawian children aged 6-18 months
Nutrition support programs that only focus upon better complementary feeding remain an insufficient means of limiting growth faltering in vulnerable populations of children. To determine if symptoms of acute infections correlate with the incidence of growth faltering in rural Malawian children, the associations between fever, diarrhea, and cough with anthropometric measures of stunting, wasting, and underweight were investigated. Data were analyzed from a trial where 209 children were provided with adequate complementary food and followed fortnightly from 6-18 months of age. Linear mixed model analysis was used to test for associations. Diarrheal disease was inversely associated with changes in height-for-age Z-score (HAZ), mid-upper arm circumference Z-score (MUACZ), and weight-for-age Z-score (WAZ). Fever was also inversely associated with changes in MUACZ and WAZ. These results suggest that initiatives to reduce febrile and diarrheal diseases are needed in conjunction with improved complementary feeding to limit growth faltering in rural Malawi
Exploring the relationship between chronic undernutrition and asymptomatic malaria in Ghanaian children
<p>Abstract</p> <p>Background</p> <p>A moderate association has been found between asymptomatic parasitaemia and undernutrition. However, additional investigation using the gold standard for asymptomatic parasitaemia confirmation, polymerase chain reaction (PCR), is needed to validate this association. Anthropometric measurements and blood samples from children less than five years of age in a rural Ghanaian community were used to determine if an association exists between chronic undernutrition and PCR-confirmed cases of asymptomatic malaria.</p> <p>Methods</p> <p>This was a descriptive cross-sectional study of 214 children less than five years of age from a community near Kumasi, Ghana. Blood samples and anthropometric measurements from these children were collected during physical examinations conducted in January 2007 by partners of the Barekuma Collaborative Community Development Programme.</p> <p>Results</p> <p>Findings from the logistic model predicting the odds of asymptomatic malaria indicate that children who experienced mild, moderate or severe stunting were not more likely to have asymptomatic malaria than children who were not stunted. Children experiencing anaemia had an increased likelihood (OR = 4.15; 95% CI: 1.92, 8.98) of asymptomatic malaria. Similarly, increased spleen size, which was measured by ultrasound, was also associated with asymptomatic malaria (OR = 2.17; 95% CI: 1.44, 3.28). Fast breathing, sex of the child, and age of the child were not significantly associated with the asymptomatic malaria.</p> <p>Conclusions</p> <p>No significant association between chronic undernutrition and presence of asymptomatic malaria was found. Children who experience anaemia and children who have splenomegaly are more likely to present asymptomatic malaria. Programmes aimed at addressing malaria should continue to include nutritional components, especially components that address anaemia.</p
Recommended from our members
Gut microbiota functions: metabolism of nutrients and other food components
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays