12 research outputs found

    Natural History of Dilated Cardiomyopathy in Children

    Get PDF
    The long-term progression of idiopathic dilated cardiomyopathy (DCM) in pediatric patients compared with adult patients has not been previously characterized. In this study, we compared outcome and long-term progression of pediatric and adult DCM populations

    FLNC Gene Splice Mutations Cause Dilated\ua0Cardiomyopathy

    Get PDF
    OBJECTIVE: To identify novel dilated cardiomyopathy (DCM) causing genes, and to elucidate the pathological mechanism leading to DCM by utilizing zebrafish as a model organism. BACKGROUND: DCM, a major cause of heart failure, is frequently familial and caused by a genetic defect. However, only 50% of DCM cases can be attributed to a known DCM gene variant, motivating the ongoing search for novel disease genes. METHODS: We performed whole exome sequencing (WES) in two multigenerational Italian families and one US family with arrhythmogenic DCM without skeletal muscle defects, in whom prior genetic testing had been unrevealing. Pathogenic variants were sought by a combination of bioinformatic filtering and cosegregation testing among affected individuals within the families. We performed function assays and generated a zebrafish morpholino knockdown model. RESULTS: A novel filamin C gene splicing variant (FLNC c.7251+1 G>A) was identified by WES in all affected family members in the two Italian families. A separate novel splicing mutation (FLNC c.5669-1delG) was identified in the US family. Western blot analysis of cardiac heart tissue from an affected individual showed decreased FLNC protein, supporting a haploinsufficiency model of pathogenesis. To further analyze this model, a morpholino knockdown of the ortholog filamin Cb in zebrafish was created which resulted in abnormal cardiac function and ultrastructure. CONCLUSIONS: Using WES, we identified two novel FLNC splicing variants as the likely cause of DCM in three families. We provided protein expression and in vivo zebrafish data supporting haploinsufficiency as the pathogenic mechanism leading to DCM

    Allele‐specific proximal promoter hypomethylation of the telomerase reverse transcriptase gene (TERT) associates with TERT expression in multiple cancers

    No full text
    Telomerase reverse transcriptase (TERT) is pathologically expressed in the vast majority of human cancers, but the epigenetic regulation of its expression is only beginning to be understood. In particular, the active TERT gene in cancer cells has been characterized as having a hypermethylated CpG island, opposite to the general association of DNA methylation with gene repression. Here, we analyzed TERT promoter CpG methylation in 833 human cancer cell lines representing 23 different tissue types and found hypermethylation of the upstream portion of the CpG island and more conserved hypomethylation of a region including the proximal TERT promoter and exon 1. In cell lines with monoallelic expression of TERT, we found allelic methylation of the proximal TERT promoter. This included cell lines with the −124 or −146 activating promoter mutation as well as wild‐type TERT cancer lines. In these cell line types, decreased proximal promoter methylation is associated with the active allele. Compared to cells with monoallelic expression of TERT, lines with biallelic expression of TERT had even lower methylation in the proximal TERT promoter. Thus, in cell lines from cancers of many different tissues, the TERT proximal promoter has canonical DNA methylation, with low methylation correlating with increased TERT expression

    Danon Disease-Associated LAMP-2 Deficiency Drives Metabolic Signature Indicative of Mitochondrial Aging and Fibrosis in Cardiac Tissue and hiPSC-Derived Cardiomyocytes

    No full text
    Danon disease is a severe X-linked disorder caused by deficiency of the lysosome-associated membrane protein-2 (LAMP-2). Clinical manifestations are phenotypically diverse and consist of hypertrophic and dilated cardiomyopathies, skeletal myopathy, retinopathy, and intellectual dysfunction. Here, we investigated the metabolic landscape of Danon disease by applying a multi-omics approach and combined structural and functional readouts provided by Raman and atomic force microscopy. Using these tools, Danon patient-derived cardiac tissue, primary fibroblasts, and human induced pluripotent stem cells differentiated into cardiomyocytes (hiPSC-CMs) were analyzed. Metabolic profiling indicated LAMP-2 deficiency promoted a switch toward glycolysis accompanied by rerouting of tryptophan metabolism. Cardiomyocytes’ energetic balance and NAD+/NADH ratio appeared to be maintained despite mitochondrial aging. In turn, metabolic adaption was accompanied by a senescence-associated signature. Similarly, Danon fibroblasts appeared more stress prone and less biomechanically compliant. Overall, shaping of both morphology and metabolism contributed to the loss of cardiac biomechanical competence that characterizes the clinical progression of Danon disease

    FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy

    No full text
    A genetic etiology has been identified in 30% to 40% of dilated cardiomyopathy (DCM) patients, yet only 50% of these cases are associated with a known causative gene variant. Thus, in order to understand the pathophysiology of DCM, it is necessary to identify and characterize additional genes. In this study, whole exome sequencing in combination with segregation analysis was used to identify mutations in a novel gene, filamin C (FLNC), resulting in a cardiac-restricted DCM pathology. Here we provide functional data via zebrafish studies and protein analysis to support a model implicating FLNC haploinsufficiency as a mechanism of DCM
    corecore