3,551 research outputs found

    The tensor part of the Skyrme energy density functional. III. Time-odd terms at high spin

    Full text link
    This article extends previous studies on the effect of tensor terms in the Skyrme energy density functional by breaking of time-reversal invariance. We have systematically probed the impact of tensor terms on properties of superdeformed rotational bands calculated within the cranked Hartree-Fock-Bogoliubov approach for different parameterizations covering a wide range of values for the isoscalar and isovector tensor coupling constants. We analyze in detail the contribution of the tensor terms to the energies and dynamical moments of inertia and study their impact on quasi-particle spectra. Special attention is devoted to the time-odd tensor terms, the effect of variations of their coupling constants and finite-size instabilities.Comment: 28 pages, 34 figure

    Symmetry conserving non-perturbative s-wave renormalization of the pion in hot and baryon dense medium

    Get PDF
    A non-perturbative s-wave renormalization of the pion in a hot and baryon rich medium is presented. This approach proceeds via a mapping of the canonical pion into the axial Noether's charge. The mapping was made dynamical in the Hartree-Fock-Bogoliubov random phase approximation (HFB-RPA). It is shown that this approach, while order mixing, is still symmetry conserving both in the baryon free and baryon rich sectors, at zero as well as finite temperature. The systematic character of this approach is emphasized and it is particularly argued that it may constitute an interesting alternative for the non-perturbative assessment of the nuclear matter saturation properties.Comment: Latex, 22 pages, 3 figure

    Random phase approximation and its extension for the quantum O(2) anharmonic oscillator

    Full text link
    We apply the random phase approximation (RPA) and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA frequencies in the standard and in the renormalized RPA approximations using the equation of motion method. In the case where the ground state has a broken symmetry, we check the existence of a zero frequency in the standard and in the renormalized RPA approximations. Then we use a time-dependent approach where the standard RPA frequencies are obtained as small oscillations around the static solution in the time-dependent Hartree-Bogoliubov equation. We draw a parallel between the two approaches.Comment: 26 pages, Latex file, no figur

    Experimental Determination of the Lorenz Number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12

    Full text link
    Nanostructuring has been shown to be an effective approach to reduce the lattice thermal conductivity and improve the thermoelectric figure of merit. Because the experimentally measured thermal conductivity includes contributions from both carriers and phonons, separating out the phonon contribution has been difficult and is mostly based on estimating the electronic contributions using the Wiedemann-Franz law. In this paper, an experimental method to directly measure electronic contributions to the thermal conductivity is presented and applied to Cu0.01Bi2Te2.7Se0.3, [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, and Bi0.88Sb0.12. By measuring the thermal conductivity under magnetic field, electronic contributions to thermal conductivity can be extracted, leading to knowledge of the Lorenz number in thermoelectric materials

    Nuclear pairing reduction due to rotation and blocking

    Get PDF
    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency ω\omega-dependence and seniority (number of unpaired particles) ν\nu-dependence of the pairing gap Δ~\tilde{\Delta} are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that in general Δ~\tilde{\Delta} decreases with increasing ω\omega, but the ω\omega-dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority ν>2\nu> 2), the pairing gaps keep almost ω\omega-independent. As a function of the seniority ν\nu, the bandhead pairing gaps Δ~(ν,ω=0)\tilde{\Delta}(\nu,\omega=0) decrease slowly with increasing ν\nu. Even for the highest seniority ν\nu bands identified so far, Δ~(ν,ω=0)\tilde{\Delta}(\nu,\omega=0) remains greater than 70% of Δ~(ν=0,ω=0)\tilde{\Delta}(\nu=0,\omega=0).Comment: 15 pages, 5 figure

    A Non-Perturbative Treatment of the Pion in the Linear Sigma-Model

    Get PDF
    Using a non-perturbative method based on the selfconsistent Quasi-particle Random-Phase Approximation (QRPA) we describe the properties of the pion in the linear σ\sigma-model. It is found that the pion is massless in the chiral limit, both at zero- and finite temperature, in accordance with Goldstone's theorem.Comment: To appear in Nucl.Phys. A, 16 pages, 2 Postscript figure

    Control of trapped-ion quantum states with optical pulses

    Get PDF
    We present new results on the quantum control of systems with infinitely large Hilbert spaces. A control-theoretic analysis of the control of trapped ion quantum states via optical pulses is performed. We demonstrate how resonant bichromatic fields can be applied in two contrasting ways -- one that makes the system completely uncontrollable, and the other that makes the system controllable. In some interesting cases, the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schr\"{o}dinger equation controllable via bichromatic resonant pulses. Extending this analysis to the quantum states of two ions, a new scheme for producing entangled qubits is discovered.Comment: Submitted to Physical Review Letter

    On a general analytical formula for U_q(su(3))-Clebsch-Gordan coefficients

    Full text link
    We present the projection operator method in combination with the Wigner-Racah calculus of the subalgebra U_q(su(2)) for calculation of Clebsch-Gordan coefficients (CGCs) of the quantum algebra U_q(su(3)). The key formulas of the method are couplings of the tensor and projection operators and also a tensor form for the projection operator of U_q(su(3)). We obtain a very compact general analytical formula for the U_q(su(3)) CGCs in terms of the U_q(su(2)) Wigner 3nj-symbols.Comment: 9 pages, LaTeX; to be published in Yad. Fiz. (Phys. Atomic Nuclei), (2001

    Assembly and architecture of the EBV B cell entry triggering complex.

    Get PDF
    Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion

    Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    Full text link
    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness variation and the resulting PSF discontinuities across the CCD boundaries significant challenges in our removal of the systematics. We resolve this complication by performing PCA CCD-by-CCD, and interpolating the basis functions using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10^-7 over the cosmologically interesting scale. From a null test using HST/UDF galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity correlation function, after the PSF correction, is consistent with the shot noise set by the finite number of objects. Therefore, we conclude that the current optical design and specification for the accuracy in the focal plane assembly are sufficient to enable the control of the PSF systematics required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd
    corecore