11,365 research outputs found
Investigation of nonlinear interaction phenomena in the ionosphere
Ionospheric phenomena as thermal radiation noise, propagation of naturally occurring radio noise through ionosphere, and generation of very low frequency emission
Erosion/corrosion of turbine airfoil materials in the high-velocity effluent of a pressurized fluidized coal combustor
Four candidate turbine airfoil superalloys were exposed to the effluent of a pressurized fluidized bed with a solids loading of 2 to 4 g/scm for up to 100 hours at two gas velocities, 150 and 270 m/sec, and two temperatures, 730 deg and 795 C. Under these conditions, both erosion and corrosion occurred. The damaged specimens were examined by cross-section measurements, scanning electron and light microscopy, and X-ray analysis to evaluate the effects of temperature, velocity, particle loading, and alloy material. Results indicate that for a given solids loading the extent of erosion is primarily dependent on gas velocity. Corrosion occurred only at the higher temperature. There was little difference in the erosion/corrosion damage to the four alloys tested under these severe conditions
An exactly solvable model of a superconducting to rotational phase transition
We consider a many-fermion model which exhibits a transition from a
superconducting to a rotational phase with variation of a parameter in its
Hamiltonian. The model has analytical solutions in its two limits due to the
presence of dynamical symmetries. However, the symmetries are basically
incompatible with one another; no simple solution exists in intermediate
situations. Exact (numerical) solutions are possible and enable one to study
the behavior of competing but incompatible symmetries and the phase transitions
that result in a semirealistic situation. The results are remarkably simple and
shed light on the nature of phase transitions.Comment: 11 pages including 1 figur
The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor
Superalloy turbine rotors in a single stage turbine with 6 percent partial admittance were operated in the effluent of a pressurized fluidized bed coal combustor for up to 164 hours. Total mass flow was 300 kg/hr and average particulate loadings ranged from 600 to 2800 ppm for several coal/sorbent combinations. A 5.5 atm turbine inlet gas pressure and inlet gas temperatures from 700 to 800 C yielded absolute gas velocities at the stator exit of about 500 m/s. The angular rotation speed (40,000 rpm) of the six inch diameter rotors was equivalent to a tip speed of about 300 m/s, and average gas velocities relative to the rotating surface ranged from 260 to 330 m/s at mean radius. The rotor erosion pattern reflects heavy particle separation with severe (5 to 500 cm/yr) erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern provides a spectrum of erosion/oxidation/deposition as a function of blade position. This spectrum includes enhanced oxidation (10 to 100 x air), mixed oxides in exposed depletion zones, sulfur rich oxides in deposition zones, and rugged areas of erosive oxide removal
Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Analysis and results
A theoretical analysis and computer program was developed for the prediction of unsteady lifting surface loadings caused by motions of leading edge and trailing edge control surfaces having sealed gaps. The final form of the downwash integral equation was formulated by isolating the singularities from the nonsingular terms and using a preferred solution process to remove and evaluate the downwash discontinuities in a systematic manner. Comparisons of theoretical and experimental pressure data are made for several control surface configurations. The comparisons indicate that reasonably accurate theoretical pressure distributions and generalized forces may be obtained for a wide variety of control surface configurations. Spanwise symmetry or antisymmetry of motion, and up to six control surfaces on each half span can be accommodated
Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network
We investigate weak localization in metallic networks etched in a two
dimensional electron gas between mK and mK when electron-electron
(e-e) interaction is the dominant phase breaking mechanism. We show that, at
the highest temperatures, the contributions arising from trajectories that wind
around the rings and trajectories that do not are governed by two different
length scales. This is achieved by analyzing separately the envelope and the
oscillating part of the magnetoconductance. For K we find
\Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and
\Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with
the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first
experimental confirmation of the geometry dependence of decoherence due to e-e
interaction.Comment: LaTeX, 5 pages, 4 eps figure
Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces
The tunnel photocurrent between a gold surface and a free-standing
semiconducting thin film excited from the rear by above bandgap light has been
measured as a function of applied bias, tunnel distance and excitation light
power. The results are compared with the predictions of a model which includes
the bias dependence of the tunnel barrier height and the bias-induced decrease
of surface recombination velocity. It is found that i) the tunnel photocurrent
from the conduction band dominates that from surface states. ii) At large
tunnel distance the exponential bias dependence of the current is explained by
that of the tunnel barrier height, while at small distance the change of
surface recombination velocity is dominant
Absence of an intrinsic value for the surface recombination velocity in doped semiconductors
A self-consistent expression for the surface recombination velocity and
the surface Fermi level unpinning energy as a function of light excitation
power () is presented for n- and p-type semiconductors doped above the
10 cm range. Measurements of on p-type GaAs films using a
novel polarized microluminescence technique are used to illustrate two limiting
cases of the model. For a naturally oxidized surface is described by a
power law in whereas for a passivated surface varies
logarithmically with . Furthermore, the variation in with surface state
density and bulk doping level is found to be the result of Fermi level
unpinning rather than a change in the intrinsic surface recombination velocity.
It is concluded that depends on throughout the experimentally
accessible range of excitation powers and therefore that no instrinsic value
can be determined. Previously reported values of on a range of
semiconducting materials are thus only valid for a specific excitation power.Comment: 10 pages, 7 figure
Better Bell Inequality Violation by Collective Measurements
The standard Bell inequality experiments test for violation of local realism
by repeatedly making local measurements on individual copies of an entangled
quantum state. Here we investigate the possibility of increasing the violation
of a Bell inequality by making collective measurements. We show that
nonlocality of bipartite pure entangled states, quantified by their maximal
violation of the Bell-Clauser-Horne inequality, can always be enhanced by
collective measurements, even without communication between the parties. For
mixed states we also show that collective measurements can increase the
violation of Bell inequalities, although numerical evidence suggests that the
phenomenon is not common as it is for pure states.Comment: 7 pages, 4 figures and 1 table; references update
- …