5,579 research outputs found
The DSS-14 C-band exciter
The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented
HST imaging of hyperluminous infrared galaxies
We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared
Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have
morphologies showing evidence for interactions, six are QSOs. Host galaxies in
the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies
have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88
and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no
clear correlation between the IR power source and the optical morphology. None
of the sources in the sample, including F15307+3252, show any evidence for
gravitational lensing. We infer that the IR luminosities are thus real. Based
on these results, and previous studies of HLIRGs, we conclude that this class
of object is broadly consistent with being a simple extrapolation of the ULIRG
population to higher luminosities; ULIRGs being mainly violently interacting
systems powered by starbursts and/or AGN. Only a small number of sources whose
infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous
objects which have been boosted by gravitational lensing.Comment: 16 Pages. Accepted for publication in MNRA
Faint Radio Sources and Star Formation History
Faint extragalactic radio sources provide important information about the
global history of star formation. Sensitive radio observations of the Hubble
Deep Field and other fields have found that sub-mJy radio sources are
predominantly associated with star formation activity rather than AGN. Radio
observations of star forming galaxies have the advantage of being independent
of extinction by dust. We use the FIR-radio correlation to compare the radio
and FIR backgrounds, and make several conclusions about the star forming
galaxies producing the FIR background. We then use the redshift distribution of
faint radio sources to determine the evolution of the radio luminosity
function, and thus estimate the star formation density as a function of
redshift.Comment: 12 pages, 9 figures, latex using texas.sty, to appear in the CD-ROM
Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and
Cosmology, held in Paris, France, Dec. 14-18, 1998. Eds.: J. Paul, T.
Montmerle, and E. Aubourg (CEA Saclay). No changes to paper, just updated
publication info in this commen
Thermal Emission from HII Galaxies: Discovering the Youngest Systems
We studied the radio properties of very young massive regions of star
formation in HII galaxies, with the aim of detecting episodes of recent star
formation in an early phase of evolution where the first supernovae start to
appear. Our sample consists of 31 HII galaxies, characterized by strong
Hydrogen emission lines, for which low resolution VLA 3.5cm and 6cm
observations were obtained. The radio spectral energy distribution has a range
of behaviours; 1) there are galaxies where the SED is characterized by a
synchrotron-type slope, 2) galaxies with a thermal slope, and, 3) galaxies with
possible free-free absorption at long wavelengths. The latter SEDs were found
in a few galaxies and represent a signature of heavily embedded massive star
clusters closely related to the early stages of massive star formation. Based
on the comparison of the star formation rates determined from the recombination
lines and those determined from the radio emission we find that SFR(Ha) is on
average five times higher than SFR(1.4GHz). We confirm this tendency by
comparing the ratio between the observed flux at 20 cm and the expected one,
calculated based on the Ha star formation rates, both for the galaxies in our
sample and for normal ones. This analysis shows that this ratio is a factor of
2 smaller in our galaxies than in normal ones, indicating that they fall below
the FIR/radio correlation. These results suggest that the emission of these
galaxies is dominated by a recent and massive star formation event in which the
first supernovae (SN) just started to explode. We conclude that the systematic
lack of synchrotron emission in those systems with the largest equivalent width
of Hb can only be explained if those are young starbursts of less than 3.5Myr
of age.Comment: Accepted for publication in Ap
New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies
This paper reports the latest results from a near-infrared search for hidden
broad-line regions (BLRs: FWHM >~ 2,000 km/s) in ultraluminous infrared
galaxies (ULIGs). The new sample contains thirty-nine ULIGs from the 1-Jy
sample selected for their lack of BLRs at optical wavelengths. The results from
this new study are combined with those from our previous optical and
near-infrared surveys to derive the fraction of all ULIGs with optical or
near-infrared signs of genuine AGN activity (either a BLR or [Si VI] emission).
Comparisons of the dereddened emission-line luminosities of the optical or
obscured BLRs detected in the ULIGs of the 1-Jy sample with those of optical
quasars indicate that the obscured AGN/quasar in ULIGs is the main source of
energy in at least 15 -- 25% of all ULIGs in the 1-Jy sample. This fraction is
30 -- 50% among ULIGs with L_ir > 10^{12.3} L_sun. These results are compatible
with those from recent mid-infrared spectroscopic surveys carried out with ISO.
(abridged)Comment: 40 pages including 10 figures and 3 tables (Table 3 should be printed
in landscape mode
The star-formation history of the universe - an infrared perspective
A simple and versatile parameterized approach to the star formation history
allows a quantitative investigation of the constraints from far infrared and
submillimetre counts and background intensity measurements.
The models include four spectral components: infrared cirrus (emission from
interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN
dust torus. The 60 m luminosity function is determined for each chosen
rate of evolution using the PSCz redshift data for 15000 galaxies. The
proportions of each spectral type as a function of 60 m luminosity are
chosen for consistency with IRAS and SCUBA colour-luminosity relations, and
with the fraction of AGN as a function of luminosity found in 12 m
samples. The luminosity function for each component at any wavelength can then
be calculated from the assumed spectral energy distributions. With assumptions
about the optical seds corresponding to each component and, for the AGN
component, the optical and near infrared counts can be accurately modelled.
A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850
m can be found with pure luminosity evolution in all 3 cosmological models
investigated: = 1, = 0.3 ( = 0), and
= 0.3, = 0.7.
All 3 models also give an acceptable fit to the integrated background
spectrum. Selected predictions of the models, for example redshift
distributions for each component at selected wavelengths and fluxes, are shown.
The total mass-density of stars generated is consistent with that observed,
in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details
of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
Potential mechanical loss mechanisms in bulk materials for future gravitational wave detectors
Low mechanical loss materials are needed to further decrease thermal noise in
upcoming gravitational wave detectors. We present an analysis of the
contribution of Akhieser and thermoelastic damping on the experimental results
of resonant mechanical loss measurements. The combination of both processes
allows the fit of the experimental data of quartz in the low temperature region
(10 K to 25 K). A fully anisotropic numerical calculation over a wide
temperature range (10 K to 300 K) reveals, that thermoelastic damping is not a
dominant noise source in bulk silicon samples. The anisotropic numerical
calculation is sucessfully applied to the estimate of thermoelastic noise of an
advanced LIGO sized silicon test mass.Comment: 7 pages, 3 figures, submitted to Journal of Physics: Conference
Series (AMALDI8
Pendulum Mode Thermal Noise in Advanced Interferometers: A comparison of Fused Silica Fibers and Ribbons in the Presence of Surface Loss
The use of fused-silica ribbons as suspensions in gravitational wave
interferometers can result in significant improvements in pendulum mode thermal
noise. Surface loss sets a lower bound to the level of noise achievable, at
what level depends on the dissipation depth and other physical parameters. For
LIGO II, the high breaking strength of pristine fused silica filaments, the
correct choice of ribbon aspect ratio (to minimize thermoelastic damping), and
low dissipation depth combined with the other achievable parameters can reduce
the pendulum mode thermal noise in a ribbon suspension well below the radiation
pressure noise. Despite producing higher levels of pendulum mode thermal noise,
cylindrical fiber suspensions provide an acceptable alternative for LIGO II,
should unforeseen problems with ribbon suspensions arise.Comment: Submitted to Physics Letters A (Dec. 14, 1999). Resubmitted to
Physics Letters A (Apr. 3, 2000) after internal (LSC) review process. PACS -
04.80.Nn, 95.55.Ym, 05.40.C
57-Fe Mossbauer study of magnetic ordering in superconducting K_0.85Fe_1.83Se_2.09 single crystals
The magnetic ordering of superconducting single crystals of
K_0.85Fe_1.83Se_2.09 has been studied between 10K and 550K using 57-Fe
Mossbauer spectroscopy. Despite being superconducting below T_sc ~30K, the iron
sublattice in K_0.85Fe_1.83Se_2.09 clearly exhibits magnetic order from well
below T_sc to its N\'eel temperature of T_N = 532 +/- 2K. The iron moments are
ordered perpendicular to the single crystal plates, i.e. parallel to the
crystal c-axis. The order collapses rapidly above 500K and the accompanying
growth of a paramagnetic component suggests that the magnetic transition may be
first order, which may explain the unusual temperature dependence reported in
recent neutron diffraction studies.Comment: 6 pages, 4 figures Submitted to Phys.Rev.
- …
