8,608 research outputs found
Detection and mapping of mineralized areas in the Cortez-Uinta Belt, Utah-Nevada, using computer-enhanced ERTS imagery
The author has identified the following significant results. Preliminary analysis indicates that mineralogical differences between altered rocks and most unaltered rocks in south-central Nevada cause visible and near infrared spectral reflectance differences, which can be used to discriminate these broad categories of rocks in multispectral images. The most important mineralogical differences are the increased abundance of goethite, hematite, and jarosite, and the presence of alunite, montmorillonite, and kaolinite in the altered rock. The technique to enhance subtle spectral differences combines ratioing of the MSS bands and contrast stretching. The stretched ratio values are used to produce black and white images that depict materials according to spectral reflectance; rationing minimizes the influence of topography and overall albedo on the grouping of spectrally similar materials. Field evaluation of color-ratio composite shows that, excluding alluvial areas, approximately 80 percent of the green and brown color patterns are related to hydrothermal alternation. The remaining 20 percent consists mainly of pink hematitic crystallized tuff, a result of vapor phase crystallization, and of tan and red ferruginous shale and siltstone
Structural geologic analysis of Nevada using ERTS-1 images: A preliminary report
Structural analysis of Nevada using ERTS-1 images showns several previously unrecognized lineaments which may be the surface manifestations of major fault or fracture zones. Principle trends are NE, NW, NNE-NNW, and ENE. Two lineament zones, the Walker Lane and Midas Trench lineament system, transect the predominantly NNE-NNW trending mountain ranges for more than 500 km. 50 circular features have been delineated. Comparison with known Tertiary volcanic centers and reference to geologic maps suggest 8 new centers. Preferred distribution of mines and Tertiary volcanic centers along some of the major lineament suggests a genetic relationship. The intersection of three previously unmapped lineaments in northwestern Nevada is the location of a highly productive metallogenic district. In the Walker Lane, ENE-trending lineament appear to be related to the occurrence of productive ore deposits
Iron-absorption band analysis for the discrimination of iron-rich zones
There are no author-identified significant results in this report
The Global Star Formation Rate from the 1.4 GHz Luminosity Function
The decimetric luminosity of many galaxies appears to be dominated by
synchrotron emission excited by supernova explosions. Simple models suggest
that the luminosity is directly proportional to the rate of supernova
explosions of massive stars averaged over the past 30 Myr. The proportionality
may be used together with models of the evolving 1.4 GHz luminosity function to
estimate the global star formation rate density in the era z < 1. The local
value is estimated to be 0.026 solar masses per year per cubic megaparsec, some
50% larger than the value inferred from the Halpha luminosity density. The
value at z ~ 1 is found to be 0.30 solar masses per year per cubic megaparsec.
The 10-fold increase in star formation rate density is consistent with the
increase inferred from mm-wave, far-infrared, ultra-violet and Halpha
observations.Comment: 10 pages, 2 figures, Astrophysical Journal Letters (in press); new PS
version has improved figure placemen
Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images
Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas
Mapping of hydrothermal alternation zones and regional rock types using computer enhanced ERTS MSS images
A combination of digital computer processing and color compositing of ERTS MSS images has been used to map hydrothermal alternation zones and regional rock types in south-central Nevada. The technique is based on enhancement of subtle visible and near infrared reflectivity differences between mineralogically dissimilar rocks, especially unaltered and altered rocks. MSS spectral bands are ratioed, pixel by pixel, in the computer and subsequently stretched. These ratio values are used to produce a new black and white image which shows the subtle spectral reflectivity differences. Additional enhancement is achieved by preparing color composites of two or more stretched ratio images. The choice of MSS bands for rationing depends on the spectral reflectance properties of the rocks to be discriminated. Although this technique is in the initial stage of development and is untested in other areas, it already appears to have considerable potential for targeting mineral prospects and for regional geologic mapping
CO-dark gas and molecular filaments in Milky Way type galaxies
We use the moving mesh code AREPO coupled to a time-dependent chemical
network to investigate the formation and destruction of molecular gas in
simulated spiral galaxies. This allows us to determine the characteristics of
the gas that is not traced by CO emission. Our extremely high resolution AREPO
simulations allow us to capture the chemical evolution of the disc, without
recourse to a parameterised `clumping factor'. We calculate H2 and CO column
densities through our simulated disc galaxies, and estimate the CO emission and
CO-H2 conversion factor. We find that in conditions akin to those in the local
interstellar medium, around 42% of the total molecular mass should be in
CO-dark regions, in reasonable agreement with observational estimates. This
fraction is almost insensitive to the CO integrated intensity threshold used to
discriminate between CO-bright and CO-dark gas, as long as this threshold is
less than 10 K km/s. The CO-dark molecular gas primarily resides in extremely
long (>100 pc) filaments that are stretched between spiral arms by galactic
shear. Only the centres of these filaments are bright in CO, suggesting that
filamentary molecular clouds observed in the Milky Way may only be small parts
of much larger structures. The CO-dark molecular gas mainly exists in a
partially molecular phase which accounts for a significant fraction of the
total disc mass budget. The dark gas fraction is higher in simulations with
higher ambient UV fields or lower surface densities, implying that external
galaxies with these conditions might have a greater proportion of dark gas.Comment: Accepted by MNRA
The star-formation history of the universe - an infrared perspective
A simple and versatile parameterized approach to the star formation history
allows a quantitative investigation of the constraints from far infrared and
submillimetre counts and background intensity measurements.
The models include four spectral components: infrared cirrus (emission from
interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN
dust torus. The 60 m luminosity function is determined for each chosen
rate of evolution using the PSCz redshift data for 15000 galaxies. The
proportions of each spectral type as a function of 60 m luminosity are
chosen for consistency with IRAS and SCUBA colour-luminosity relations, and
with the fraction of AGN as a function of luminosity found in 12 m
samples. The luminosity function for each component at any wavelength can then
be calculated from the assumed spectral energy distributions. With assumptions
about the optical seds corresponding to each component and, for the AGN
component, the optical and near infrared counts can be accurately modelled.
A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850
m can be found with pure luminosity evolution in all 3 cosmological models
investigated: = 1, = 0.3 ( = 0), and
= 0.3, = 0.7.
All 3 models also give an acceptable fit to the integrated background
spectrum. Selected predictions of the models, for example redshift
distributions for each component at selected wavelengths and fluxes, are shown.
The total mass-density of stars generated is consistent with that observed,
in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details
of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
- …
