The decimetric luminosity of many galaxies appears to be dominated by
synchrotron emission excited by supernova explosions. Simple models suggest
that the luminosity is directly proportional to the rate of supernova
explosions of massive stars averaged over the past 30 Myr. The proportionality
may be used together with models of the evolving 1.4 GHz luminosity function to
estimate the global star formation rate density in the era z < 1. The local
value is estimated to be 0.026 solar masses per year per cubic megaparsec, some
50% larger than the value inferred from the Halpha luminosity density. The
value at z ~ 1 is found to be 0.30 solar masses per year per cubic megaparsec.
The 10-fold increase in star formation rate density is consistent with the
increase inferred from mm-wave, far-infrared, ultra-violet and Halpha
observations.Comment: 10 pages, 2 figures, Astrophysical Journal Letters (in press); new PS
version has improved figure placemen