22 research outputs found

    Liquid hydrogen flow decay from test cell ''A'' feedsystem to reactor or orifice flow impedance

    Get PDF

    Detailed analog models status report

    Full text link
    This report presents a detailed description of various analog computer models of the NERVA system developed during CY '65 for systems and control analysis work at WANL. These models were developed prior to the agreements between WANL and REON to use a Common Analog Model for all official predictions of test performance. However, the models described in this report have been of considerable value in helping to assess the validity of several propposed versions of the Common Analog Model and will continue to be used for validation of proposed nuclear subsystem models. Included in this report are detailed descriptions of the basic NERVA-I reactor and nozzle model, EST and TCA feedsystem models, one-console NERVA-I and Nerva-II models, and PCV-18 emergency flow shutdown models. Also included is a description of the nuclear subsystem portion of the Common Analog Model II and for the EST engine system

    The 17th Rocky Mountain Virology Association Meeting

    Get PDF
    Since 2000, scientists and students from the greater Rocky Mountain region, along with invited speakers, both national and international, have gathered at the Mountain Campus of Colorado State University to discuss their area of study, present recent findings, establish or strengthen collaborations, and mentor the next generation of virologists and prionologists through formal presentations and informal discussions concerning science, grantsmanship and network development. This year, approximately 100 people attended the 17th annual Rocky Mountain Virology Association meeting, that began with a keynote presentation, and featured 29 oral and 35 poster presentations covering RNA and DNA viruses, prions, virus-host interactions and guides to successful mentorship. Since the keynote address focused on the structure and function of Zika and related flaviviruses, a special session was held to discuss RNA control. The secluded meeting at the foot of the Colorado Rocky Mountains gave ample time for in-depth discussions amid the peak of fall colors in the aspen groves while the random bear provided excitement. On behalf of the Rocky Mountain Virology Association, this report summarizes the \u3e50 reports

    The 20th Anniversary Meeting of the Rocky Mountain Virology Association

    Get PDF
    Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations

    The 17th Rocky Mountain Virology Association Meeting

    Get PDF
    Since 2000, scientists and students from the greater Rocky Mountain region, along with invited speakers, both national and international, have gathered at the Mountain Campus of Colorado State University to discuss their area of study, present recent findings, establish or strengthen collaborations, and mentor the next generation of virologists and prionologists through formal presentations and informal discussions concerning science, grantsmanship and network development. This year, approximately 100 people attended the 17th annual Rocky Mountain Virology Association meeting, that began with a keynote presentation, and featured 29 oral and 35 poster presentations covering RNA and DNA viruses, prions, virus-host interactions and guides to successful mentorship. Since the keynote address focused on the structure and function of Zika and related flaviviruses, a special session was held to discuss RNA control. The secluded meeting at the foot of the Colorado Rocky Mountains gave ample time for in-depth discussions amid the peak of fall colors in the aspen groves while the random bear provided excitement. On behalf of the Rocky Mountain Virology Association, this report summarizes the \u3e50 reports

    A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation

    No full text
    Herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, 1/3 of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection (Whitley & Gnann, 2002). Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unraveled. In both cases latent viral DNA exists in an "end-less" state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary Latency Associated Transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection since early stage virus reactivation may have transpired in the post mortem time period in the ganglia. Nonetheless, low-level transcription of VZV gene 63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation as well as presents future directions for study
    corecore