17 research outputs found

    Alternative NADH dehydrogenase extends lifespan and increases resistance to xenobiotics in Drosophila

    Get PDF
    Mitochondrial alternative NADH dehydrogenase (aNDH) was found to extend lifespan when expressed in the fruit fly. We have found that fruit flies expressing aNDH from Ciona intestinalis (NDX) had 17-71% lifespan prolongation on media with different protein-tocarbohydrate ratios except NDX-expressing males that had 19% shorter lifespan than controls on a high protein diet. NDX-expressing flies were more resistant to organic xenobiotics, 2,4-dichlorophenoxyacetic acid and alloxan, and inorganic toxicant potassium iodate, and partially to sodium molybdate treatments. On the other hand, NDX-expressing flies were more sensitive to catechol and sodium chromate. Enzymatic analysis showed that NDX-expressing males had higher glucose 6-phosphate dehydrogenase activity, whilst both sexes showed increased glutathione S-transferase activity.Peer reviewe

    Metabolic gene regulation by Drosophila GATA transcription factor Grain

    Get PDF
    Nutrient-dependent gene regulation critically contributes to homeostatic control of animal physiology in changing nutrient landscape. In Drosophila, dietary sugars activate transcription factors (TFs), such as Mondo-Mlx, Sugarbabe and Cabut, which control metabolic gene expression to mediate physiological adaptation to high sugar diet. TFs that correspondingly control sugar responsive metabolic genes under conditions of low dietary sugar remain, however, poorly understood. Here we identify a role for Drosophila GATA TF Grain in metabolic gene regulation under both low and high sugar conditions. De novo motif prediction uncovered a significant over-representation of GATA-like motifs on the promoters of sugar-activated genes in Drosophila larvae, which are regulated by Grain, the fly ortholog of GATA1/2/3 subfamily. grain expression is activated by sugar in Mondo-Mlx-dependent manner and it contributes to sugar-responsive gene expression in the fat body. On the other hand, grain displays strong constitutive expression in the anterior midgut, where it drives lipogenic gene expression also under low sugar conditions. Consistently with these differential tissue-specific roles, Grain deficient larvae display delayed development on high sugar diet, while showing deregulated central carbon and lipid metabolism primarily on low sugar diet. Collectively, our study provides evidence for the role of a metazoan GATA transcription factor in nutrient-responsive metabolic gene regulation in vivo.Peer reviewe

    High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster

    No full text
    During the last 20 years, there has been a considerable scientific debate about the possible mechanisms of induction of metabolic disorders by reducing monosaccharides such as glucose or fructose. In this study, we report the metabolic rearrangement in response to consumption of these monosaccharides at concentrations ranging from 0.25% to 20% in a Drosophila model. Flies raised on high-glucose diet displayed delay in pupation and increased developmental mortality compared with fructose consumers. Both monosaccharides at high concentrations promoted an obese-like phenotype indicated by increased fly body mass, levels of uric acid, and circulating and stored carbohydrates and lipids; and decreased percentage of water in the body. However, flies raised on fructose showed lower levels of circulating glucose and higher concentrations of stored carbohydrates, lipids, and uric acid. The preferential induction of obesity caused by fructose in Drosophila was associated with increased food consumption and reduced mRNA levels of DILP2 and DILP5 in the brain of adult flies. Our data show that glucose and fructose differently affect carbohydrate and lipid metabolism in Drosophila in part by modulation of insulin/insulin-like growth factor signaling. Some reported similarities with effects observed in mammals make Drosophila as a useful model to study carbohydrate influence on metabolism and development of metabolic disorders

    Goldfish brain and heart are well protected from Ni2+-induced oxidative stress

    No full text
    After 96 h goldfish exposure to 10, 25 or 50 mg/L of Ni2 + no Ni accumulation was found in the brain, but lipid peroxide concentration was by 44% elevated in the brain, whereas carbonyl protein content was by 45–45% decreased in the heart. High molecular mass thiol concentration was enhanced by 30% in the heart, while in the brain low molecular mass thiol concentration increased by 28–88%. Superoxide dismutase activity was by 27% and 35% increased in the brain and heart, respectively. Glutathione peroxidase activity was lowered to 38% and 62% of control values in both tissues, whereas catalase activity was increased in the heart by 15–45%, accompanied by 18–29% decreased glutathione reductase activity. The disturbances of free radical processes in the brain and heart might result from Ni-induced injuries to other organs with more prominent changes in the heart, because of close contact of this organ with blood, whereas the blood–brain barrier seems to protect the brain

    Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster

    No full text
    Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75–85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75–85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes

    Molybdate partly mimics insulin-promoted metabolic effects in Drosophila melanogaster

    No full text
    Molybdenum-containing salts have been found to attenuate diabetes complications in mammals by affecting processes normally regulated by insulin and thus were believed to mimic insulin activity. In this study, we used a fruit fly model to test sodium molybdate, Na2MoO4, action in relation to insulin-promoted processes and toxicity. We studied how larval food supplementation with sodium molybdate affected levels of body carbohydrates and lipids in two-day old adult Drosophila melanogaster. Molybdate salt, in the concentrations used (0.025, 0.05, 0.5, 5, and 10 mM), showed low toxicity to fly larvae and slightly influenced development and the percentage of pupated animals. Additionally, sodium molybdate decreased the level of hemolymph glucose in males by 30%, and increased the level of hemolymph trehalose in flies of both sexes. These changes were accompanied by an increase in whole body trehalose and glycogen of about 30-90%. Although total lipid levels in flies of both sexes were depleted by 25%, an increased amount of triacylglycerides among total lipids was observed. These effects were not related to changes in food intake. Taken together, the present data let us suggest that sodium molybdate may at least partly mimic insulin-related effects in Drosophila

    Exposure to sodium molybdate results in mild oxidative stress in Drosophila melanogaster

    No full text
    Objectives: The study was conducted to assess the redox status of Drosophila flies upon oral intake of insulin-mimetic salt, sodium molybdate (Na2MoO4). Methods: Oxidative stress parameters and activities of antioxidant and associated enzymes were analyzed in two-day-old D. melanogaster insects after exposure of larvae and newly eclosed adults to three molybdate levels (0.025, 0.5, or 10 mM) in the food. Results: Molybdate increased content of low molecular mass thiols and activities of catalase, superoxide dismutase, g

    High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster

    No full text
    The effects of sucrose in varied concentrations (0.25–20%) with constant amount of yeasts in larval diet on development and metabolic parameters of adult fruit fly Drosophila melanogaster were studied. Larvae consumed more food at low sucrose diet, overeating with yeast. On high sucrose diet, larvae ingested more carbohydrates, despite consuming less food and obtaining less protein derived from yeast. High sucrose diet slowed down pupation and increased pupa mortality, enhanced levels of lipids and glycogen, increased dry body mass, decreased water content, i.e. resulted in obese phenotype. Furthermore, it suppressed reactive oxygen species-induced oxidation of lipids and proteins as well as the activity of superoxide dismutase. The activity of catalase was gender-related. In males, at all sucrose concentrations used catalase activity was higher than at its concentration of 0.25%, whereas in females sucrose concentration virtually did not influence the activity. High sucrose diet increased content of protein thiols and the activity of glucose-6-phosphate dehydrogenase. The increase in sucrose concentration also enhanced uric acid level in females, but caused opposite effects in males. Development on high sucrose diets was accompanied by elevated steady-state insulin-like peptide 3 mRNA level. Finally, carbohydrate starvation at yeast overfeeding on low sucrose diets resulted in oxidative stress reflected by higher levels of oxidized lipids and proteins accompanied by increased superoxide dismutase activity. Potential mechanisms involved in regulation of redox processes by carbohydrates are discussed
    corecore