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An assembled cDNA coding for the putative single-subunit NADH dehydrogenase (NDX) of Ciona intestinaliswas
introduced into Drosophila melanogaster. The encoded protein was found to localize to mitochondria and to
confer rotenone-insensitive substrate oxidation in organello. Transgenic flies exhibited increased resistance to
menadione, starvation and temperature stress, and manifested a sex and diet-dependent increase in mean
lifespan of 20–50%. However, NDX was able only weakly to complement the phenotypes produced by the
knockdown of complex I subunits.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Many mitochondrial diseases are associated with defects in com-
plex I (cI) of the electron-transport chain. In mammals (e.g. bovine),
this complex consists of 45 subunits encoded by separate genes,
seven of which are in the mitochondrial genome [1–3]. Mutations
in these genes lead to diverse pathologies affecting the central ner-
vous system, sensory organs, and skeletal and heart muscle, which
may manifest at any stage of life. Disease may also result from muta-
tions in genes encoding proteins responsible for the assembly of this
multi-subunit complex. Ageing has also been linked to the functional
decline of cI [4,5].

At this time, cI-linked disease remains incurable, with only palliative
treatments available. Aswith other diseases of genetic origin, the devel-
opment of somatic gene therapywould be highly desirable, but faces se-
vere practical obstacles, in addition to the safety and efficacy issues that
affect all such strategies. First, its genetic heterogeneity is currently a
challenge even for diagnosis. Whilst establishing the broad category of
cI deficiency is relatively straightforward [2], the nature of the underly-
ing gene defect can remain unclear, even if the whole coding genome is
sequenced. This reflects the fact that many components of the machin-
ery of cI biosynthesis are still unidentified. Second, no effective technol-
ogy for editing of mtDNA has yet been established; hence the many
03412894.
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cases linked to mtDNA-encoded subunits of cI would require a different
approach. The hydrophobic nature of themtDNA-encoded subunits also
presents challenges for allotopic expression. Third, the diversity and
multiplicity of affected tissues, including the brain, require a broad-
spectrum approach that in some cases would need to be effective
right from birth, if not before. Fourth, many mitochondrial diseases
manifest defects in multiple complexes of the respiratory chain, due to
genetic lesions affecting the machinery of mtDNA maintenance or ex-
pression. These cases are as common as those affecting only cI. Genetic
therapy thereof requires either direct repair of the underlying lesion,
which is again highly heterogeneous, or else an approach targeting
multiple components of the respiratory chain.

An attractive strategy to overcome many of these problems is sug-
gested by the fact that fungi, plants, and some animals contain the com-
ponents of an alternative mitochondrial respiratory chain, where the
function of cI is replaced by one or more single-subunit, non-proton-
motive NADHdehydrogenases encoded in nuclear DNA. These enzymes
are embedded in the innermitochondrialmembrane, but adopt two dif-
ferent topologies. The so-called ‘external’ NADH dehydrogenases, such
as Nde1 and Nde2 in yeast (Saccharomyces cerevisiae), or the sole repre-
sentative of the superfamily in Yarrowia lipolytica, YLNDH2, oxidize
NADH supplied directly from the cytosol, whereas internal NADH dehy-
drogenases such as S. cerevisiaeNdi1 face themitochondrial matrix, and
use substrate supplied from there [6]. These alternative dehydrogenases
also differ according to whether they use NADH or NADPH (or both) as
their substrate [6,7].
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Expression of yeast Ndi1 has been successfully used for alleviation of
cI defects in multiple models including nematodes [8], fruit flies [9,10],
rats [11,12], and human cells [13]. Additionally, yeast Ndi1 has been
shown tohave therapeutic benefit in several Parkinson's diseasemodels
[14–19] and evidence supporting a possible use in anti-cancer treat-
ment has also been put forward [20]. Many other physiological effects
were also reported inmodel organisms expressing yeast Ndi1, including
extended lifespan [9,21] and resistance to particular stresses [9]. In-
triguingly, the alternative NADH dehydrogenases show some sequence
similaritywith AIF (apoptosis-inducing factor) and the S. cerevisiaeNdi1
protein has been shown to be capable of inducing apoptosis [22,23].

Recently, the components of the alternative respiratory chain,
including a rotenone-insensitive NADH dehydrogenase, have been
found in several animal taxa, including tunicates (urochordates) [24].
However, the properties of these alternative NADH dehydrogenases
remain uninvestigated, despite an accumulating literature on the alter-
native respiratory chain of some animals and protozoans, based on our
own studies and those of others [25–31]. Our laboratory has, for exam-
ple, exploited the alternative oxidase (AOX) from the tunicate Ciona
intestinalis to by-pass defects in complexes III and IV, by expressing it
in fruit fly [25,26], mouse [27] and human cell [28–30] models.

Whilst the therapeutic potential of alternativeNADHdehydrogenase
has been demonstrated on diverse models, using S. cerevisiae Ndi1
[8–21], the yeast enzyme may not be optimal for such use, for several
reasons. First, and most importantly, it exists in vivo without the pres-
ence of cI. Strictly therefore, in its host organism, it is not an alternative
to cI, but its replacement. Conversely, it co-exists with external NADH
dehydrogenasesNde1 andNde2,whichmay share someof itsmetabolic
roles. Any properties of alternative NADH dehydrogenases that relate to
these interactions and, most importantly, co-regulationwith cI, are like-
ly to be altered or missing in the yeast enzyme. Second, in accordance
with this prediction, yeast Ndi1 appears to be constitutively active [9],
unlike AOX from C. intestinalis, which only contributes to electron flow
conditions where the regular respiratory chain is inhibited [28]. Third,
most likely as a consequence of constitutive activity, yeast Ndi1 expres-
sion can also be deleterious, under conditions where the ATP supply is
limiting. This was found to be the case in two Drosophila models of mi-
tochondrial disease, created by the knockdown of complex IV subunits
[26] or the tko25t mutation affecting mitochondrial protein synthesis
[32]. Finally, whereas animals such as C. intestinalis have a single
NADH dehydrogenase, yeast has three and plants typically several
more. Ndi1 must therefore co-operate or compete metabolically with
other enzymes, and may thus be adapted to handle some physiological
stresses but not others.

In order to overcome these limitations, and implement a cI by-pass
from a source phylogenetically closer to humans, we set out to charac-
terize the alternative NADH dehydrogenase from C. intestinalis (here
designated NDX) by expressing it in Drosophila and analyzing the prop-
erties it confers. Specifically, we tested its intracellular targeting, its abil-
ity to replace cI both in organello and in vivo, and the phenotypic
properties it confers upon flies.

2. Materials and methods

2.1. Cloning procedures

C. intestinalis expressed sequence tag (EST) cDNA clones cibd016c12,
ciad062k07 and ciem809l11 were obtained from RIKEN BioResource
Center (Tsukuba, Japan). The full NDX coding-region was assembled
by serial overlap-extension PCR (Supplementary Fig. S1A, B), using
Phusion F-530S high-fidelity DNA polymerase (Thermo Scientific),
with addition of terminal restriction sites SalI andNheI to facilitate clon-
ing. S.N.A.P.™ UV-Free Gel Purification Kit (Life Technologies) was used
for DNA recovery. Following initial cloning into ZeroBlunt TOPO vector
(Life Technologies) NDX was recloned into vector pMT/V5-His B (Life
Technologies) for expression in S2 cells, following amplification with
chimeric primers pMT_Nhe1cK_F and pMT_Sal1cK_R (Table S1) to
introduce appropriate restriction sites (Fig. S1C). Recloning into vector
pUASTattB (Addgene, [33]), to create the transgenic construct
pUASTattB-NDX, used the scheme shown in Fig. S1D. Positive clones
were selected by colony PCR, then verified by restriction analysis and
sequencing. Empty vector pUASTattB or pUASTattB-NDX was injected
into Bloomington Drosophila Stock Center lines 24861 (y1 M{vas-
int.Dm}ZH-2A w⁎; PBac{y+-attP-3B}VK00001) and 24871 (y1 M{vas-
int.Dm}ZH-2A w⁎; PBac{y+-attP-3B}VK00033) by Rainbow Transgenic
Flies, Inc. (Camarillo, CA, USA), after which the construct M{vas-
int.Dm}ZH-2A bearing φC31 recombinase was crossed out.

2.2. Drosophila stocks and maintenance

Except where stated, flies were maintained and grown on standard
medium at 25 °C, using a 12 h light/dark cycle, as described previously
[9,25]. Following characterization, transgenic lines were maintained
over appropriate balancers for chromosome 2 (CyO) or 3 (TM3Sb). Ubiq-
uitous expression was driven using a derivative of Bloomington line
8641 but with genotype y1 w⁎; P{da-GAL4.w[-]}3. RNAi targeted against
cI subunits CG6020 and CG3683 used VDRC lines 13131 and 46797
(Vienna Drosophila RNAi Center), respectively, as described previously
[4]. Crosses using flies transgenic for UAS-dependent C. intestinalis
AOX employed line UAS-AOXF24 (chromosome 3 insertion, [25]) over
balancer TM3Sb.

2.3. Cell culture and expression assays

Drosophila S2 cells were grown in Schneider's medium at 27 °C.
Co-transformation of vectors pMT/V5-His B (with integrated NDX)
and pCoHygro, selection of a stably expressing cell-line and induc-
tion of NDX expression were performed using Drosophila expres-
sion system (DES®-inducible kit, Life Technologies) according to
the manufacturer's instructions. After induction, cells were fixed
and stained as described [34], using mouse anti-V5 (Life Technolo-
gies) and rabbit anti-COXIV (Abcam) as primary antibodies, respec-
tively with AlexaFluor® 568 goat anti-mouse IgG (H+L) and goat
anti-rabbit AlexaFluor® 488 IgG (H+L) (Life Technologies) as sec-
ondary antibodies. Protein extracts (from adult flies or S2 cells)
were prepared, concentrations measured and Western blots carried
out as described previously [25], using either the above anti-V5 anti-
body, with HRP-conjugated horse anti-mouse IgG (H+L) (Vector Lab-
oratories) as secondary antibody, both at 1:10,000 dilution, or a
customized rabbit antibody raised and purified against NDX peptide
LPATAQVAERKGKWLAEY (21st Century Biochemicals) at 1:15,000 dilu-
tion, with reprobing for NDUFS3 (cI subunit) and GAPDH (glyceralde-
hyde 3-phosphate dehydrogenase), all as described previously [9].
QRTPCR was carried out as described previously [25], using NDX-
specific primers (Table S1) and RpL32 as a normalization control [25].

2.4. Respirometry

Mitochondria were isolated from 70 to 90 flies. Flies were
immobilized on ice and gently homogenized at 4 °C in a chilled mortar
in 1ml of isolation buffer (250mM sucrose, 5mMTris/HCl, 2mMEGTA,
0.1% bovine serum albumin, pH 7.2). The homogenate was filtered
through muslin and centrifuged for 5 min at 200 gmax. The supernatant
was then centrifuged at 9000 gmax for 10 min to collect mitochondria.
The pellet was resuspended in 50 μl of the isolation buffer without
bovine serum albumin. Oxygen consumption was measured with a
Clarke-type oxygen electrode (Oxygraph-2k, Oroboros) in a buffer con-
taining 120 mM KCl, 5 mM KH2PO4, 3 mM HEPES, 1 mM EGTA, 1 mM
MgCl2, and 0.2% bovine serum albumin, pH 7.2, with successive addi-
tions of substrate (5 mM sodium pyruvate, 5 mM L-proline), 5 mM
ADP, 0.5 μM rotenone and 1 mM KCN.
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2.5. Sequencing of C. intestinalis genomic DNA

C. intestinalis specimenswere obtained from the Station Biologique de
Roscoff, France (Service Expédition de Modèles Biologiques, Centre de
Ressources Biologiques Marines, CNRS). Dissected muscle of single indi-
viduals was stored at −80 °C prior to processing for DNA extraction by
salting-out [35]. Segments of the NDX coding sequence were amplified
and directly sequenced using various primers as detailed in Table S1.

2.6. Stress-resistance assays

Resistance to the reactive oxygen species (ROS) generatormenadione
was tested for batches of ten flies transferred into vials containing folded
strips (2.4 × 12 cm) of four-layer cellulose filter paper soakedwith 0.8ml
of 20 mM menadione sodium bisulfite (Sigma-Aldrich) in 5% sucrose.
Survivors were counted every 12 h following the start of exposure [36,
37]. Starvation resistance was measured similarly, except that the filter
paper was soaked with water. Survival on agar-only diet was scored in
vials containing solidified agar in place of standard food. To evaluate re-
sistance to heat stress, single flies were transferred into small glass vials
with cotton stoppers and placed in a water bath at 41 °C [36,38]. The
time taken to reach coma was recorded. After heat shock, vials of para-
lyzed flies were placed, without further disturbance, at room tempera-
ture (23–25 °C), to score the time taken for full recovery of locomotion.
About 20 males and 8–9 females were tested for each genotype, sex
and age. Recovery from cold-induced paralysis, induced by placing flies
at 4 °C for 15 min, was measured by the same procedure.

2.7. Lifespan curves

Lifespan was measured in mortality cages [36], constructed from
15 cm diameter piping. A plastic food vial was screwed to the cage
through a hole in the side-wall. The food contained different concentra-
tions of yeast and sucrose (see figure legends), plus 1.5% agar and 0.4%
propionic acid. The number of dead flies was recorded every second
day. Dead individuals were aspirated through a rubber-covered hole
on the sidewall opposite the food-vial hole.

3. Results

3.1. Identification, assembly and cloning of NDX

We identified a C. intestinalis homologue of the fungal and plant
non-proton-motive NADH dehydrogenases by BLAST analysis of
publicly available cDNA (EST) and genomic sequence resources.
Based on this analysis, only one such close homologue of the super-
family appears to be present in the Ciona genome, currently shown
provisionally as NCBI database entry XP_002122465. No such homo-
logue was found in arthropods. Using overlapping cDNA clones from
a Ciona EST library (see Fig. S1), we were able to assemble a full-
length cDNA by high-fidelity overlap-extension PCR. The full-
length sequence (Fig. S2) predicts a polypeptide similar to yeast
(S. cerevisiae) Nde1, Nde2 and Ndi1 or to Arabidopsis NDA1, NDA2,
and NDB1–4. It is slightly more similar to Nde1/2 (38% identity)
than to Ndi1 (34% identity), but also more similar to the NDA than
to the NDB family in Arabidopsis. For this reason we provisionally
designate it as NDX since, without detailed functional and topologi-
cal information, it is impossible to state whether it acts on NADH or
on NADPH or both, and whether it faces the mitochondrial matrix
(like Ndi1 and NDA) or the intermembrane space (like Nde1/2 and
NDB) or perhaps even serves both compartments.

Likemost genes in C. intestinalis [39], NDX appears to be highly poly-
morphic, although most of the variation is at silent sites. The predicted
amino acid sequence of the fully assembled cDNA differed from the da-
tabase entry at two amino acids (Fig. S2B). In order to be sure that these
variants were not due to a cloning or PCR artifact, we analyzed genomic
DNA amplified from individual specimens of C. intestinalis. In both cases,
the prevalent or sole allele was identical to our cloned cDNA, not to the
database entry (Fig. S2B). Homozygosity at these positions indicates
that these are either natural polymorphisms in the gene or errors
in the genomic DNA sequence underlying the database entry. The
expressed cDNA should thus be functional.

3.2. NDX is expressible in Drosophila and targeted to mitochondria

The NDX cDNA was recloned into the copper-inducible expression
vector pMT with an in-frame epitope tag (V5) and transfected into
Drosophila S2 cells. After induction, signal from the V5 tag was
colocalized with COXIV by immunocytochemistry (Fig. 1A) and, based
on Western blotting, co-fractionated with mitochondrial marker
NDUFS3 (cI) but not cytosolic marker GAPDH (Fig. 1B). The extrapolat-
ed molecular weight of the polypeptide (49 kDa) is less than predicted
for the full-length fusion protein including the V5 tag (55.9 kDa),
and suggests that the 50 amino-acid targeting peptide predicted by
Mitoprot is cleaved upon mitochondrial import.

To investigate its effects at the whole-organism level, NDX was in-
troduced into the fly genome using the φC31 recombination system
[33,40], under the control of the GAL4-dependent UAS promoter. Trans-
genic lines were created containing single insertions of UAS-NDX on
each of chromosomes 2 and 3 (designated UAS-NDX2 and UAS-NDX3, re-
spectively)with parallel control lines containing insertions of the empty
vector at the same positions to serve as controls (here designated con2

and con3). Upon global induction using the da-GAL4 driver, each
NDX-transgenic line was found to be viable when either hemizygous
or homozygous for the transgene, with no apparent deleterious
phenotype. GAL4-dependent transcription of NDX was verified by
QRTPCR (Fig. 1C), showing expression in hemizygous flies approxi-
mately 50-fold greater than in uninduced homozygous flies, and a
further 2–3 fold increased by a second copy of the transgene. Expres-
sion at the protein level was verified using a customized antibody
raised against NDX peptides (Fig. 1D). Since NDX co-exists naturally
with AOX, which provides an equivalent by-pass of respiratory chain
complexes III and IV, we tested the possibility that the two enzymes
when co-expressed might generate a lethal ‘short-circuit’ of oxidative
phosphorylation.WhenNDX-expressingflies of either sexwere crossed
withUAS-NDX plusUAS-AOX double transgenic flies, viable progeny ex-
pressing both transgenes were produced, albeit in decreased numbers
compared with controls (Fig. 2A). Flies expressing a single copy of
each transgene showed an eclosion delay of slightly more than 1 day,
which was increased by a further day if two expressed copies of NDX
were present (Fig. 2B).

3.3. NDX confers rotenone-resistance to mitochondrial substrate oxidation

The functionality of expressed NDXwas verified by polarography of
mitochondrial suspensions supplied with a standard cI-linked substrate
mix, in the presence or absence of rotenone. Mitochondria from NDX-
expressing flies of both sexes showed a significant rotenone-resistant
substrate oxidation compared with controls (Fig. 3A, B), which was
completely abolished by the further addition of KCN (Fig. 3B). The activ-
ity varied in amount according to the number of copies of the UAS-NDX
transgene and of the da-GAL4 driver: two copies of each gave approxi-
mately 20% rotenone resistance in both sexes. Attempts to measure
NADH dehydrogenase activity in vitro gave less consistent results. In son-
icated mitochondrial extracts from NDX-expressing flies we observed a
substantial rotenone-resistant activity, but this was not stable with time.
No such activity was detectable using intact mitochondria.

3.4. NDX confers stress-resistance to Drosophila

The alternative respiratory chain is believed to confer resistance
against stresses resulting in mitochondrial inhibition. We therefore
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tested the susceptibility of NDX-expressing flies to various such treat-
ments. We first tested exposure to the ROS generator menadione,
whose acute toxicity is believed to be due to overproduction of
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20mMmenadione (Fig. 4A). Taking 36 h of exposure as a discriminating
condition, we verified significant protection by NDX of flies of both sexes
and different ages (Fig. 4B).

NDX-expressing flies were also significantly protected against ther-
mal stresses. Both young and ageing NDX-expressing flies of both sexes
showed significantly decreased recovery times from both cold- (4 °C)
and heat- (41 °C) induced paralysis, as well as increased time of resis-
tance to heat-shock before the onset of paralysis (Fig. 4C–E). NDX also
conferred a modest resistance against total starvation (Fig. 4F), although
the effect was not seenwhen flieswere cultured on aminimal diet of just
agar (Fig. S3A), on which they survived only for about 4–5 days.

3.5. NDX confers extended lifespan to Drosophila

In previous studies, the ubiquitous expression of yeast Ndi1 in
Drosophilawas shown to extend lifespan independently of dietary restric-
tion [9]. Therefore, we tested whether NDX would have a similar effect.
Comparedwith controls, NDXexpression resulted in a significant increase
(N50%) of both mean and maximum lifespan in rich media (Fig. 5A), al-
though this effect was mitigated by dietary restriction (Fig. 5B, C). On a
medium poor in both sugars and protein, the lifespan increase was only
of the order of a few percent (Fig. 5C). Lifespan of males and females
was increased to a similar extent (Fig. S3B, compare with Fig. 5B).

3.6. NDX weakly complements lethality due to complex I knockdown

Yeast Ndi1 expression was shown previously to complement the
lethality (at 25 °C) of knockdown of subunits of cI [9] in Drosophila,
whilst leaving a residual phenotype [32]. We therefore tested whether
NDX was able to act similarly. At 25 °C, knockdown of CG6020 or
CG3683, Drosophila homologues of human NDUFA9 and NDUFA8,
respectively, driven by da-GAL4, was developmentally lethal, but co-
expression of NDX was unable to rescue this lethality. At room
temperature (21 °C) CG3683 knockdown was still lethal, with a tiny
number of escapers, but co-expression of two copies of NDX was
sufficient to generate a substantial number of progeny (Table 1). At
21 °C CG6020 knockdown was no longer lethal, but a similar co-
expression of NDX enabled significantly more progeny knocked down
for CG6020 to eclose (Table 1), compared with controls not expressing
NDX.Whilst these findings indicate a weak rescue, caution is still need-
ed interpreting these findings, as discussed below.

4. Discussion

Using Drosophila as a model system, we provide here the first evi-
dence for the functionality of a member of the single-subunit, non-
proton-motive NADH dehydrogenases from a metazoan source.

4.1. Enzymatic activity of NDX

When expressed in Drosophila, Ciona NDX has properties indicating
that it is a bona fide NADH dehydrogenase. The protein was targeted to
mitochondria based on immunocytochemistry and western blots, and
supported the rotenone-insensitive oxidation of cI-linked substrates
added to mitochondrial suspensions. This activity was completely
inhibited by cyanide, indicating that electron flow through NDX is func-
tionally coupled to the downstream portion of themitochondrial respira-
tory chain. The absence of detectable NADH dehydrogenase activity in
intact mitochondrial suspensions is consistent with NDX being of the ‘in-
ternal’ type. However, the activity detected in sonicated extracts was un-
stable, hence unquantifiable. One possible explanation may be that the
enzyme associates with cI and/or other respiratory chain complexes,
whichmay regulate its activity. A final conclusion regarding the preferred
substrate(s), topology and other properties of NDXmust await the deter-
mination of a reliable procedure for its extraction in a functionally stable
form. Until then, we prefer to retain the nomenclature NDX, which
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makes no presumptions on these points. Further submitochondrial isola-
tion experiments could be done in combination with protease digests to
address the localization question in more detail, in a future experiment.

4.2. Structure and predicted interactions of NDX

Modeling of NDX based on the structure and catalytic mechanism of
yeast Ndi1 [42,43] reveals a compact structure with conservation of
amino acids important for substrate binding. These include the first
FAD-binding Rossmann fold (Fig. 6), where Trp-63 and Gly-64 (Ndi1
numbering) are responsible for binding of the FAD pyrophosphate
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ring (Ala-393 and Gln-394) and the ribose moiety (Arg-85 and Val-
176), plus those forming the hydrophobic channel (Phe-90, Leu-444,
Leu-447, and Tyr-482) are conserved. The ubiquinone-binding site is
also similar, with Gly-408 corresponding to Gly-445 of Ndi1, forming a
hydrogen bond with the ubiquinol hydroxyl group. These conserved
features are consistent with NDX having a similar function and sub-
strate specificity as Ndi1. NDX lacks any calcium-binding EF-hand
motif, such as those seen in many externally oriented alternative
NADH dehydrogenases of plants and fungi [6,7], and which has been
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Table 1
Test for NDX complementation of cI knockdown.

Crossa CG3683-KD
female

CG3683-KD
male

CG6020-KD
female

CG6020-KD
male

NDX 61/463 60/367 50/327 55/484
(13%) (16%) (15%) (11%)

Empty vector 0/268 2/387 40/395 31/561
(0%) (1%) (10%) (6%)

Significanceb P b 0.0001 P b 0.0001 P b 0.01 P b 0.0001

a In each cross, both parents were homozygous for either NDX or the empty vector, as
indicated, on different chromosomes. All progeny therefore carried two hemizygous cop-
ies of either NDX or the empty vector. Reciprocal crosses used flies carrying knockdown
constructs targeted against the indicated genes, over a CyO balancer chromosome, mated
to flies homozygous for da-GAL4. Rescued progeny were therefore those lacking the CyO
marker. In each case are quoted the absolute numbers of rescued (versus CyO control)flies
eclosing, pooled from at least 2, mostly 3 experiments, with percentages shown in
parentheses.

b Based on chi-squared test, the numbers of progeny bearing NDX were in every case
significantly above expectation, based on the number carrying only empty vector.
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suggested to confer the ability to use NADPH as substrate [7], although
this is also disputed. Intriguingly, it also contains six cysteine residues
whereas Ndi1 contains none, although two are seen in many plant
and fungal NADH dehydrogenases (Fig. 6), and two others are
widespread in metazoans.

The molecular weight of mature NDX, based on Western blots of
both the epitope-tagged and native versions of the protein, is consistent
with cleavage near the site predicted byMitoprot (after residue 50), im-
plying that NDX is imported and processed by the canonical pathway
for mitochondrially targeted proteins. The mature protein would retain
all functionally conserved elements of the single-subunit NADH
dehydrogenases.

4.3. Phenotypic effects of NDX expression in Drosophila

Regarding those phenotypic parameters tested in both cases, the
expression of NDX conferred similar properties on Drosophila as Ndi1.
Both transgenes extend lifespan, although NDX had a much weaker
A

B

Fig. 6. Amino-acid sequence conservation of NADH dehydrogenases from different taxa. Ci— Ci
An— Aspergillus niger (XP_001392541.2), Sm— Selaginella moellendorffii (XP_002970203.1), Sb
Nematostella vectensis, Ct — Capitella teleta, Cg — Crassostrea gigas, Ac — Aplysia californica. (A
(equivalent to Ser-61, Trp-63 and Gly-64 of Sc Ndi1), and showing the immediately adjacent
NDX, highlighted in orange, aligned with the corresponding regions from the other species. Th
relative effect under conditions of dietary restriction, whereas
lifespan-extension by Ndi1 was independent thereof [9]. However
this finding should be treated with caution, since the genetic back-
grounds usedwere different, even though each employed an isogenetic
control.

Two copies of NDX, combinedwith two copies of the da-GAL4 driver,
were required to convincingly reveal both enzymatic activity and partial
rescue of developmental lethality caused by cI knockdown. The latter
was also temperature-dependent, being ineffective at 25 °C. Thus,
NDX appears to have a weaker phenotypic effect than Ndi1. The
temperature-difference in complementation efficiency may be due to
the fact that C. intestinalis has a lower optimal temperature in its natural
environment than S. cerevisiae [44–46]. However, NDX expression in
Drosophila had a protective effect from both heat- and cold-stress, sug-
gesting that it is less heat-labile than the fly's own cI. An effect of inser-
tion site on transgene function can also not be excluded, since NDXused
a standard recipient strain with an engineered integration site, whereas
Ndi1 and AOX transgenic lineswere produced using random, P-element
mediated integration. However, AOX lines created subsequently by
targeted integration [A. Andjelkovic, unpublished data] retain full activ-
ity. One of the integration sites used in the present study (VK00001 site
on chromosome 2)may be subject to position effects [40], although this
site has recently been used for functionally successful insertion of a
specific GAL4 driver [47]. Moreover, integration on chromosome 3 pro-
duced a similar amount of functionality (data not shown). One possibil-
ity that should be considered is that NDX is stabilized only under stress
conditions where its activity is required, such as known components of
the alternative respiratory chain in plants [48–50]. However, this would
require that the signals bringing about any such response be intrinsic to
the protein or that any extrinsic molecular machinery that is involved
must be conserved inDrosophila, despite the absence of NDX as a specif-
ic substrate since at least the emergence of the arthropods. In its natural
context in Ciona, the gene is intronless, an organization common
amongst stress-inducible genes [51].

The weak rescue of cI knockdown produced by NDX might reflect
the fact that NDX co-exists naturally with cI, and might be stabilized
or functionally activated via a structural interaction with it, that is
ona intestinalis, Sc— Saccharomyces cerevisiaeNdi1, Um— Ustilago maydis (XP_757559.1),
— Sorghumbicolor (XP_002456580.1), St— Solanum tuberosum (NDB1, CAB52797.1), Nv—
) Rossmann fold motif, with conserved residues mentioned in text highlighted in yellow
targeting presequence of Ci NDX. (B) The sequences surrounding the six cysteines of Ci
e numbering shown is of the Ci sequence.

http://www.ncbi.nlm.nih.gov/protein/CAB52797
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conserved between Drosophila and Ciona. The knockdown of the sub-
units tested, CG6020 (NDUFA9) and CG3683 (NDUFA8), results in a
substantial decrease in the amount of assembled cI [9]. In contrast,
NDX was active when cI was inhibited by rotenone, which has not
been reported to disturb the overall cI structure. However, since no
structural interaction between cI and single-subunit NADH dehydroge-
nases has previously been reported, alternative explanations, such as
consequent alterations in membrane structure, composition or fluidity,
should also be considered. The difference in complementation efficiency
between yeast Ndi1 and CionaNDXmight also reflect differences in sub-
strate affinity, and that when cI is unavailable, other mechanisms limit
the level to which intramitochondrial NADH can accumulate. Lastly,
there may be functions of cI other than NADH oxidation, for which
Ndi1 but not NDX can substitute.

NDX also protected against menadione toxicity. Menadione is con-
sidered to be a ROS (superoxide) generator, exerting its major toxic
effect inside mitochondria, where enzymes containing oxidatively vul-
nerable Fe–S clusters (including aconitase and complexes II and III, as
well as cI) are essential for normal metabolism. NDX expression con-
ferred prolonged survival time in the presence of menadione, but flies
still succumbed eventually, suggesting either that cI is themost suscep-
tible, but not the only target of the toxin, or that NDX is unable to replace
the full function of cI, which is in any case clear from the fact that it is
non-proton-motive. An alternative explanation for the changes seen in
stress resistance and in lifespan would be a hormetic effect, whereby
mitochondrial impairment or damage produced by NDX induces a
more robust stress response. Expressing a catalytically-inactivated
mutant should distinguish between these possibilities.
4.4. Conclusions

The degree to which NDX will prove useful therapeutically remains
to be determined. Although its phenotypic effects in Drosophila appear
to be more modest than those of Ndi1, at least in regard to the comple-
mentation of cI deficiency, the maximal rate of substrate oxidation
in organello in the presence of the cI inhibitor rotenone was similar
to the maximal rate of substrate oxidation in organello conferred
by C. intestinalis AOX in the presence of the cIV inhibitor cyanide [25],
i.e. approximately 20% of the uninhibited rate.

If the hypothesized interaction between NDX and cI applies, pathol-
ogies associated with the structural absence of cI may not be ameliorat-
ed by implementation of NDX, whereas those in which cI is only
functionally impaired, for example due to ROS-induced damage, may
be curable. An obligatory association of NDX with cI and/or cIII would
be logical, if much of cI in vivo is organized in supercomplexes to facili-
tate efficient channeling of electrons and to limit reverse electron flow.
NDX activation would thus be calibrated to the activity of cI, and would
only be brought into service when cI is overloaded, damaged or
inhibited. Future experiments should aim to test this proposition and,
if supported, its physiological consequences, as well as addressing the
alternate explanations suggested above.
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