394 research outputs found
DTI Parameter Optimisation for Acquisition at 1.5T: SNR Analysis and Clinical Application
Background. Magnetic Resonance (MR) diffusion
tensor imaging (DTI) is able to quantify in vivo tissue
microstructure properties and to detect disease related pathology
of the central nervous system. Nevertheless, DTI is limited by low
spatial resolution associated with its low signal-to-noise-ratio
(SNR). Aim. The aim is to select a DTI sequence
for brain clinical studies, optimizing SNR and resolution.
Methods and Results. We applied 6 methods for SNR
computation in 26 DTI sequences with different parameters using 4
healthy volunteers (HV). We choosed two DTI sequences for their
high SNR, they differed by voxel size and b-value. Subsequently,
the two selected sequences were acquired from 30 multiple
sclerosis (MS) patients with different disability and lesion load
and 18 age matched HV. We observed high concordance between mean
diffusivity (MD) and fractional anysotropy (FA), nonetheless the
DTI sequence with smaller voxel size displayed a better
correlation with disease progression, despite a slightly lower
SNR. The reliability of corpus callosum (CC) fiber tracking with
the chosen DTI sequences was also tested.
Conclusions. The sensitivity of DTI-derived
indices to MS-related tissue abnormalities indicates that the
optimized sequence may be a powerful tool in studies aimed at
monitoring the disease course and severity
Comparison of Standard 1.5 T vs. 3 T Optimized Protocols in Patients Treated with Glatiramer Acetate. A Serial MRI Pilot Study
This study explored the effect of glatiramer acetate (GA, 20 mg) on lesion activity using the 1.5 T standard MRI protocol (single dose gadolinium [Gd] and 5-min delay) or optimized 3 T protocol (triple dose of Gd, 20-min delay and application of an off-resonance saturated magnetization transfer pulse). A 15-month, phase IV, open-label, single-blinded, prospective, observational study included 12 patients with relapsing-remitting multiple sclerosis who underwent serial MRI scans (Days −45, −20, 0; the minus ign indicates the number of days before GA treatment; and on Days 30, 60, 90, 120, 150, 180, 270 and 360 during GA treatment) on 1.5 T and 3 T protocols. Cumulative number and volume of Gd enhancing (Gd-E) and T2 lesions were calculated. At Days −45 and 0, there were higher number (p < 0.01) and volume (p < 0.05) of Gd-E lesions on 3 T optimized compared to 1.5 T standard protocol. However, at 180 and 360 days of the study, no significant differences in total and cumulative number of new Gd-E and T 2 lesions were found between the two protocols. Compared to pre-treatment period, at Days 180 and 360 a significantly greater decrease in the cumulative number of Gd-E lesions (p = 0.03 and 0.021, respectively) was found using the 3 T vs. the 1.5 T protocol (p = NS for both time points). This MRI mechanistic study suggests that GA may exert a greater effect on decreasing lesion activity as measured on 3 T optimized compared to 1.5 T standard protocol
Transition to secondary progression in relapsing-onset multiple sclerosis: Definitions and risk factors
Background: No uniform criteria for a sensitive identification of the transition from relapsing–remitting multiple sclerosis (MS) to secondary-progressive multiple sclerosis (SPMS) are available. Objective: To compare risk factors of SPMS using two definitions: one based on the neurologist judgment (ND) and an objective data-driven algorithm (DDA). Methods: Relapsing-onset MS patients (n = 19,318) were extracted from the Italian MS Registry. Risk factors for SPMS and for reaching irreversible Expanded Disability Status Scale (EDSS) 6.0, after SP transition, were estimated using multivariable Cox regression models. Results: SPMS identified by the DDA (n = 2343, 12.1%) were older, more disabled and with a faster progression to severe disability (p < 0.0001), than those identified by the ND (n = 3868, 20.0%). In both groups, the most consistent risk factors (p < 0.05) for SPMS were a multifocal onset, an age at onset >40 years, higher baseline EDSS score and a higher number of relapses; the most consistent protective factor was the disease-modifying therapy (DMT) exposure. DMT exposure during SP did not impact the risk of reaching irreversible EDSS 6.0. Conclusion: A DDA definition of SPMS identifies more aggressive progressive patients. DMT exposure reduces the risk of SPMS conversion, but it does not prevent the disability accumulation after the SP transition
Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment
BACKGROUND:
Oxidative stress is well documented in multiple sclerosis (MS) lesions, but its correspondence at peripheral level is still controversial. Objective. To evaluate peripheral oxidative stress markers in MS patients.
METHODS:
We studied total blood levels of Coenzyme Q10 (CoQ10), oxidized and reduced forms of glutathione, malondialdehyde, reactive oxygen species (ROS), anti-oxidized-low-density lipoproteins (anti-oxLDL) antibodies, and antioxidant power (PAO) in 87 patients with different MS clinical phenotypes and in 77 controls.
RESULTS:
CoQ10 was lower whereas anti-oxLDL antibodies titer was higher in MS patients than in controls. The benign variant of MS displayed both higher CoQ10 and higher anti-oxLDL than other MS clinical variants. Female patients had lower CoQ10 and PAO and higher ROS than male patients. Differences were greater in younger patients with shorter disease duration. Surprisingly, there was no difference for these markers between treated and untreated patients.
CONCLUSION:
We found lower antioxidant agents and higher anti-oxLDL antibodies in MS, and the highest antibody titers occurred in the benign form. We suggest that natural anti-oxLDL antibodies can be protective against MS, saving blood brain barrier integrity. Our findings also suggest that milder MS is associated with a distinct oxidative stress pattern, which may provide a useful biomarker of disease prognosis
The effects of transcutaneous spinal direct current stimulation on neuropathic pain in multiple sclerosis: clinical and neurophysiological assessment
Background: Central neuropathic pain represents one of the most common symptoms in multiple sclerosis (MS) and it seriously affects quality of life. Spinal mechanisms may contribute to the pathogenesis of neuropathic pain in MS. Converging evidence from animal models and neurophysiological and clinical studies in humans suggests a potential effect of transcranial direct current stimulation (tc-DCS) on neuropathic pain. Spinal application of DCS, i.e., transcutaneous spinal DCS (ts-DCS), may modulate nociception through inhibition of spinal reflexes. Therefore, ts-DCS could represents an effective, safe and well-tolerated treatment for neuropathic pain in MS, a largely unexplored topic. This study is a pilot randomized double-blind sham-controlled trial to evaluate the efficacy of ts-DCS on central neuropathic pain in MS patients. Methods: Thirty-three MS patients with central neuropathic pain were enrolled and randomly assigned to two groups in a double-blind sham-controlled design: anodal ts-DCS group (n = 19, 10 daily 20-min sessions, 2 mA) or sham ts-DCS group (n = 14, 10 daily 20-min sessions, 0 mA). The following clinical outcomes were evaluated before ts-DCS treatment (T0), after 10 days of treatment (T1) and 1 month after the end of treatment (T2): neuropathic pain symptoms inventory (NPSI), Ashworth Scale (AS) for spasticity and Fatigue Severity Scale (FSS). A subgroup of patients treated with anodal ts-DCS (n = 12) and sham ts-DCS (n = 11) also underwent a parallel neurophysiological study of the nociceptive withdrawal reflex (NWR) and the NWR temporal summation threshold (TST), two objective markers of pain processing at spinal level. Results: Anodal ts-DCS group showed a significant improvement in NPSI at T1, which persisted at T2, while we did not detect any significant change in AS and FSS. Sham ts-DCS group did not show any significant change in clinical scales. We observed a non-significant trend towards an inhibition of NWR responses in the anodal ts-DCS group at T1 and T2 when compared to baseline. Conclusions: Anodal ts-DCS seems to have an early and persisting (i.e., 1 month after treatment) clinical efficacy on central neuropathic pain in MS patients, probably through modulation of spinal nociception. Clinical Trial Registration: www.ClinicalTrials.gov, identifier #NCT02331654
The still under-investigated role of cognitive deficits in PML diagnosis.
Background Despite cognitive deficits frequently represent the first clinical manifestations of Progressive Multifocal Leukoencephalopathy (PML) in Natalizumab-treated MS patients, the importance of cognitive deficits in PML diagnosis is still under-investigated. The aim of the current study is to investigate the cognitive deficits at PML diagnosis in a group of Italian patients with PML. Methods Thirty-four PML patients were included in the study. The demographic and clinical data, the lesion load and localization, and the longitudinal clinical course was compared between patients with (n = 13) and without (n = 15) cognitive deficit upon PML suspicion (the remaining six patients were asymptomatic). Clinical presentation of cognitive symptoms was described in detail. Result After symptoms detection, the time to diagnosis resulted to be shorter for patients presenting with cognitive than for patients with non cognitive onset (p = 0.03). Within patients with cognitive onset, six patients were presenting with language and/or reading difficulties (46.15%); five patients with memory difficulties (38.4%); three patients with apraxia (23.1%); two patients with disorientation (15.3%); two patients with neglect (15.3%); one patients with object agnosia (7.7%), one patient with perseveration (7.7%) and one patient with dementia (7.7%). Frontal lesions were less frequent (p = 0.03), whereas temporal lesions were slightly more frequent (p = 0.06) in patients with cognitive deficits. The longitudinal PML course seemed to be more severe in cognitive than in non cognitive patients (F = 2.73, p = 0.03), but differences disappeared (F = 1.24, p = 0.29) when balancing for the incidence of immune reconstitution syndrome and for other treatments for PML (steroids, plasma exchange (PLEX) and other therapies (Mefloquine, Mirtazapine, Maraviroc). Conclusion Cognitive deficits at PML onset manifest with symptoms which are absolutely rare in MS. Their appearance in MS patients should strongly suggest PML. Clinicians should be sensitive to the importance of formal neuropsychological evaluation, with particular focus on executive function, which are not easily detected without a formal assessment
Determinants of disability in multiple sclerosis: an immunological and MRI study
Multiple sclerosis (MS) is characterized by a wide interpatient clinical variability and available biomarkers of disease severity still have suboptimal reliability. We aimed to assess immunological and MRI-derived measures of brain tissue damage in patients with different motor impairment degrees, for in vivo investigating the pathogenesis of MS-related disability. Twenty-two benign (B), 26 secondary progressive (SP), and 11 early, nondisabled relapsing-remitting (RR) MS patients and 37 healthy controls (HC) underwent conventional and diffusion tensor brain MRI and, as regards MS patients, immunophenotypic and functional analysis of stimulated peripheral blood mononuclear cells (PBMC). Corticospinal tract (CST) fractional anisotropy and grey matter volume were lower and CST diffusivity was higher in SPMS compared to RRMS and BMS patients. CD14+IL6+ and CD4+IL25+ cell percentages were higher in BMS than in SPMS patients. A multivariable model having EDSS as the dependent variable retained the following independent predictors: grey matter volume, CD14+IL6+ and CD4+IL25+ cell percentages. In patients without motor impairment after long-lasting MS, the grey matter and CST damage degree seem to remain as low as in the earlier disease stages and an immunological pattern suggestive of balanced pro- and anti-inflammatory activity is observed. MRI-derived and immunological measures might be used as complementary biomarkers of MS severity
Blood-Brain Barrier Permeability of Normal Appearing White Matter in Relapsing-Remitting Multiple Sclerosis
BACKGROUND: Multiple sclerosis (MS) affects the integrity of the blood-brain barrier (BBB). Contrast-enhanced T1 weighted magnetic resonance imaging (MRI) is widely used to characterize location and extent of BBB disruptions in focal MS lesions. We employed quantitative T1 measurements before and after the intravenous injection of a paramagnetic contrast agent to assess BBB permeability in the normal appearing white matter (NAWM) in patients with relapsing-remitting MS (RR-MS). METHODOLOGY/PRINCIPAL FINDINGS: Fifty-nine patients (38 females) with RR-MS undergoing immunomodulatory treatment and nine healthy controls (4 females) underwent quantitative T1 measurements at 3 tesla before and after injection of a paramagnetic contrast agent (0.2 mmol/kg Gd-DTPA). Mean T1 values were calculated for NAWM in patients and total cerebral white matter in healthy subjects for the T1 measurements before and after injection of Gd-DTPA. The pre-injection baseline T1 of NAWM (945±55 [SD] ms) was prolonged in RR-MS relative to healthy controls (903±23 ms, p = 0.028). Gd-DTPA injection shortened T1 to a similar extent in both groups. Mean T1 of NAWM was 866±47 ms in the NAWM of RR-MS patients and 824±13 ms in the white matter of healthy controls. The regional variability of T1 values expressed as the coefficient of variation (CV) was comparable between the two groups at baseline, but not after injection of the contrast agent. After intravenous Gd-DTPA injection, T1 values in NAWM were more variable in RR-MS patients (CV = 0.198±0.046) compared to cerebral white matter of healthy controls (CV = 0.166±0.018, p = 0.046). CONCLUSIONS/SIGNIFICANCE: We found no evidence of a global BBB disruption within the NAWM of RR-MS patients undergoing immunomodulatory treatment. However, the increased variation of T1 values in NAWM after intravenous Gd-DTPA injection points to an increased regional inhomogeneity of BBB function in NAWM in relapsing-remitting MS
- …