710 research outputs found
Handel's fixed point theorem revisited
Michael Handel proved in [7] the existence of a fixed point for an
orientation preserving homeomorphism of the open unit disk that can be extended
to the closed disk, provided that it has points whose orbits form an oriented
cycle of links at infinity. Later, Patrice Le Calvez gave a different proof of
this theorem based only on Brouwer theory and plane topology arguments [9].
These methods permitted to improve the result by proving the existence of a
simple closed curve of index 1. We give a new, simpler proof of this improved
version of the theorem and generalize it to non-oriented cycles of links at
infinityComment: Ergodic Theory and Dynamical Systems, Available on CJO 201
Lack of increased availability of root-derived C may explain the low N2O emission from low N-urine patches
Urine deposition on grassland causes significant N2O losses, which in some cases may result from increased denitrification stimulated by labile compounds released from scorched plant roots. Two 12-day experiments were conducted in 13C-labelled grassland monoliths to investigate the link between N2O production and carbon mineralization following application of low rates of urine-N. Measurements of N2O and CO2 emissions from the monoliths as well as δ13C signal of evolved CO2 were done on day -4, -1, 0, 1, 2, 4, 5, 6 and 7 after application of urine corresponding to 3.1 and 5.5 g N m-2 in the first and second experiment, respectively. The δ13C signal was also determined for soil organic matter, dissolved organic C and CO2 evolved by microbial respiration. In addition, denitrifying enzyme activity (DEA) and nitrifying enzyme activity (NEA) were measured on day -1, 2 and 7 after the first urine application event. Urine did not affect DEA, whereas NEA was enhanced 2 days after urine application. In the first experiment, urine had no significant effect on the N2O flux, which was generally low (-8 to 14 μg N2O-N m-2 h-1). After the second application event, the N2O emission increased significantly to 87 μg N2O-N m-2 h-1 and the N2O emission factor for the added urine-N was 0.18 %. However, the associated 13C signal of soil respiration was unaffected by urine. Consequently, the increased N2O emission from the simulated low N-urine patches was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots
Enhanced light emission from Carbon Nanotubes integrated in silicon micro-resonator
Single-wall carbon nanotube are considered a fascinating nanomaterial for
photonic applications and are especially promising for efficient light emitter
in the telecommunication wavelength range. Furthermore, their hybrid
integration with silicon photonic structures makes them an ideal platform to
explore the carbon nanotube instrinsic properties. Here we report on the strong
photoluminescence enhancement from carbon nanotubes integrated in silicon ring
resonator circuit under two pumping configurations: surface-illuminated pumping
at 735 nm and collinear pumping at 1.26 {\mu}m. Extremely efficient rejection
of the non-resonant photoluminescence was obtained. In the collinear approach,
an emission efficiency enhancement by a factor of 26 has been demonstrated in
comparison with classical pumping scheme. This demonstration pave the way for
the development of integrated light source in silicon based on carbon
nanotubes
The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges
Microbial inoculations contribute to reducing agricultural systems' environmental footprint by supporting sustainable production and regulating climate change. However, the indirect and cascading effects of microbial inoculants through the reshaping of soil microbiome are largely overlooked. By discussing the underlying mechanisms of plant- and soil-based microbial inoculants, we suggest that a key challenge in microbial inoculation is to understand their legacy on indigenous microbial communities and the corresponding impacts on agroecosystem functions and services relevant to climate change. We explain how these legacy effects on the soil microbiome can be understood by building on the mechanisms driving microbial invasions and placing inoculation into the context of ecological succession and community assembly. Overall, we advocate that generalizing field trials to systematically test inoculants' effectiveness and developing knowledge anchored in the scientific field of biological/microbial invasion are two essential requirements for applying microbial inoculants in agricultural ecosystems to tackle climate change challenges
Light Emission in Silicon from Carbon Nanotubes
The use of optics in microelectronic circuits to overcome the limitation of
metallic interconnects is more and more considered as a viable solution. Among
future silicon compatible materials, carbon nanotubes are promising candidates
thanks to their ability to emit, modulate and detect light in the wavelength
range of silicon transparency. We report the first integration of carbon
nanotubes with silicon waveguides, successfully coupling their emission and
absorption properties. A complete study of this coupling between carbon
nanotubes and silicon waveguides was carried out, which led to the
demonstration of the temperature-independent emission from carbon nanotubes in
silicon at a wavelength of 1.3 {\mu}m. This represents the first milestone in
the development of photonics based on carbon nanotubes on silicon
Optical Gain in Carbon Nanotubes
Semiconducting single-wall carbon nanotubes (s-SWNTs) have proved to be
promising material for nanophotonics and optoelectronics. Due to the
possibility of tuning their direct band gap and controlling excitonic
recombinations in the near-infrared wavelength range, s-SWNT can be used as
efficient light emitters. We report the first experimental demonstration of
room temperature intrinsic optical gain as high as 190 cm-1 at a wavelength of
1.3 {\mu}m in a thin film doped with s-SWNT. These results constitute a
significant milestone toward the development of laser sources based on carbon
nanotubes for future high performance integrated circuits.Comment: 4 figure
Ultra-compact on-chip metaline-based 1.3/1.6 μm wavelength demultiplexer
International audienceIn this article, we report an experimental demonstration of enabling technology exploiting resonant properties of plasmonic nanoparticles, for the realization of wavelength sensitive ultra-minituarized (4×4 µm) optical metadevices. To this end the example of a 1.3/1.6 µm wavelength demultiplexer is considered. Its technological implementation is based on the integration of gold cut wire based metalines on the top of a silicon on insulator waveguide. The plasmonic metalines modify locally the effective index of the Si waveguide and thus allow for the implementation of wavelength dependent optical pathways. The 1.3/1.6µm wavelength separation with extinction ratio between two demultiplexer's channels reaching up to 20dB is experimentally demonstrated. The considered approach, which can be readily adapted to other planar lightwave circuits platforms and nanoresonators of different types of materials, is suited for the implementation of a generic family of wavelength sensitive guided wave optical metadevices. http://dx
- …