The use of optics in microelectronic circuits to overcome the limitation of
metallic interconnects is more and more considered as a viable solution. Among
future silicon compatible materials, carbon nanotubes are promising candidates
thanks to their ability to emit, modulate and detect light in the wavelength
range of silicon transparency. We report the first integration of carbon
nanotubes with silicon waveguides, successfully coupling their emission and
absorption properties. A complete study of this coupling between carbon
nanotubes and silicon waveguides was carried out, which led to the
demonstration of the temperature-independent emission from carbon nanotubes in
silicon at a wavelength of 1.3 {\mu}m. This represents the first milestone in
the development of photonics based on carbon nanotubes on silicon