41 research outputs found

    Aufmerksamkeitsfokus und visuelle Selektion im Sport

    Full text link
    Die vorliegende Arbeit hat sich mit Fragen zum Aufmerksamkeitsfokus und zur visuellen Informationsselektion in sportartspezifischen Entscheidungssituationen auseinander gesetzt. Auf der Grundlage einer technisch-methodisch sowie zwei weiteren inhaltlich-theoretisch motivierten Fragestellungen wurden drei übergeordnete Experimente durchgeführt, die methodisch einerseits auf dem Hinweisreizparadigma und andererseits auf dem Flicker-Cueing Paradigma basierten. Die Ergebnisse der Arbeit zeigen erstens, dass das Hinweisreizparadigma nicht auf die Untersuchung visueller Aufmerksamkeitsprozesse in sportartspezifischen Entscheidungssituationen übertragen werden kann. Zweitens scheint Flicker Cueing als visuelle Form der Aufmerksamkeitslenkung effektiver zu sein als verbale Instruktionen. Drittens scheinen frequente Flicker in videobasierten Entscheidungstrainings ihre Fähigkeit, die Aufmerksamkeit exogen zu lenken, aufgrund von Gewöhnungseffekten zu verlieren

    Auditory perception dominates in motor rhythm reproduction

    Get PDF
    It is commonly agreed that vision is more sensitive to spatial information, while audition is more sensitive to temporal information. When both visual and auditory information are available simultaneously, the modality appropriateness hypothesis predicts that, depending on the task, the most appropriate (i.e., reliable) modality dominates perception. While previous research mainly focused on discrepant information from different sensory inputs to scrutinize the modality appropriateness hypothesis, the current study aimed at investigating the modality appropriateness hypothesis when multimodal information was provided in a nondiscrepant and simultaneous manner. To this end, participants performed a temporal rhythm reproduction task for which the auditory modality is known to be the most appropriate. The experiment comprised an auditory (i.e., beeps), a visual (i.e., flashing dots), and an audiovisual condition (i.e., beeps and dots simultaneously). Moreover, constant as well as variable interstimulus intervals were implemented. Results revealed higher accuracy and lower variability in the auditory condition for both interstimulus interval types when compared to the visual condition. More importantly, there were no differences between the auditory and the audiovisual condition across both interstimulus interval types. This indicates that the auditory modality dominated multimodal perception in the task, whereas the visual modality was disregarded and hence did not add to reproduction performance

    Nothing magical:pantomimed grasping is controlled by the ventral system

    Get PDF
    In a recent amendment to the two-visual-system model, it has been proposed that actions must result in tactile contact with the goal object for the dorsal system to become engaged (Whitwell et al., Neuropsychologia 55:41-50, 2014). The present study tested this addition by assessing the use of allocentric information in normal and pantomime actions. To this end, magicians, and participants who were inexperienced in performing pantomime actions made normal and pantomime grasps toward objects embedded in the MĂĽller-Lyer illusion. During pantomime grasping, a grasp was made next to an object that was in full view (i.e., a displaced pantomime grasping task). The results showed that pantomime grasps took longer, were slower, and had smaller hand apertures than normal grasping. Most importantly, hand apertures were affected by the illusion during pantomime grasping but not in normal grasping, indicating that displaced pantomime grasping is based on allocentric information. This was true for participants without experience in performing pantomime grasps as well as for magicians with experience in pantomiming. The finding that the illusory bias is limited to pantomime grasping and persists with experience supports the conjecture that the normal engagement of the dorsal system's contribution requires tactile contact with a goal object. If no tactile contact is made, then movement control shifts toward the ventral system

    Interrelations Between Temporal and Spatial Cognition: The Role of Modality-Specific Processing

    Get PDF
    Temporal and spatial representations are not independent of each other. Two conflicting theories provide alternative hypotheses concerning the specific interrelations between temporal and spatial representations. The asymmetry hypothesis (based on the conceptual metaphor theory, Lakoff and Johnson, 1980) predicts that temporal and spatial representations are asymmetrically interrelated such that spatial representations have a stronger impact on temporal representations than vice versa. In contrast, the symmetry hypothesis (based on a theory of magnitude, Walsh, 2003) predicts that temporal and spatial representations are symmetrically interrelated. Both theoretical approaches have received empirical support. From an embodied cognition perspective, we argue that taking sensorimotor processes into account may be a promising steppingstone to explain the contradictory findings. Notably, different modalities are differently sensitive to the processing of time and space. For instance, auditory information processing is more sensitive to temporal than spatial information, whereas visual information processing is more sensitive to spatial than temporal information. Consequently, we hypothesized that different sensorimotor tasks addressing different modalities may account for the contradictory findings. To test this, we critically reviewed relevant literature to examine which modalities were addressed in time-space mapping studies. Results indicate that the majority of the studies supporting the asymmetry hypothesis applied visual tasks for both temporal and spatial representations. Studies supporting the symmetry hypothesis applied mainly auditory tasks for the temporal domain, but visual tasks for the spatial domain. We conclude that the use of different tasks addressing different modalities may be the primary reason for (a)symmetric effects of space on time, instead of a genuine (a)symmetric mapping

    Kissing right? On the consistency of the head-turning bias in kissing

    Get PDF
    The present study investigated the consistency of the head-turning bias in kissing. In particular we addressed what happens if a person who prefers to kiss with the head turned to the right kisses a person who prefers to kiss with the head turned to the left. To this end, participants (N=57) were required to kiss a life-sized doll's head rotated in different orientations that were either compatible or incompatible with the participants' head-turning preference. Additionally, participants handedness, footedness, and eye preference was assessed. Results showed that a higher percentage of participants preferred to kiss with their head turned to the right than to the left. In addition, the right-turners were more consistent in their kissing behaviour than left-turners. That is, with the doll's head rotated in an incompatible direction, right-turners were less likely to switch their head to their non-preferred side. Since no clear relationships between head-turning bias and the other lateral preferences (i.e., handedness, footedness, and eye preference) were discerned, the more consistent head-turning bias among right-turners could not be explained as deriving from a joint pattern of lateral preferences that is stronger among individuals with rightward as compared to individuals with leftward lateral preferences. © 2010 Psychology Press

    Deceptive body movements reverse spatial cueing in soccer

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.The purpose of the experiments was to analyse the spatial cueing effects of the movements of soccer players executing normal and deceptive (step-over) turns with the ball. Stimuli comprised normal resolution or point-light video clips of soccer players dribbling a football towards the observer then turning right or left with the ball. Clips were curtailed before or on the turn (-160, -80, 0 or +80 ms) to examine the time course of direction prediction and spatial cueing effects. Participants were divided into higher-skilled (HS) and lower-skilled (LS) groups according to soccer experience. In experiment 1, accuracy on full video clips was higher than on point-light but results followed the same overall pattern. Both HS and LS groups correctly identified direction on normal moves at all occlusion levels. For deceptive moves, LS participants were significantly worse than chance and HS participants were somewhat more accurate but nevertheless substantially impaired. In experiment 2, point-light clips were used to cue a lateral target. HS and LS groups showed faster reaction times to targets that were congruent with the direction of normal turns, and to targets incongruent with the direction of deceptive turns. The reversed cueing by deceptive moves coincided with earlier kinematic events than cueing by normal moves. It is concluded that the body kinematics of soccer players generate spatial cueing effects when viewed from an opponent's perspective. This could create a reaction time advantage when anticipating the direction of a normal move. A deceptive move is designed to turn this cueing advantage into a disadvantage. Acting on the basis of advance information, the presence of deceptive moves primes responses in the wrong direction, which may be only partly mitigated by delaying a response until veridical cues emerge

    Keeping an eye on the violinist: motor experts show superior timing consistency in a visual perception task

    Get PDF
    Common coding theory states that perception and action may reciprocally induce each other. Consequently, motor expertise should map onto perceptual consistency in specific tasks such as predicting the exact timing of a musical entry. To test this hypothesis, ten string musicians (motor experts), ten non-string musicians (visual experts), and ten non-musicians were asked to watch progressively occluded video recordings of a first violinist indicating entries to fellow members of a string quartet. Participants synchronised with the perceived timing of the musical entries. Results revealed significant effects of motor expertise on perception. Compared to visual experts and non-musicians, string players not only responded more accurately, but also with less timing variability. These findings provide evidence that motor experts’ consistency in movement execution—a key characteristic of expert motor performance—is mirrored in lower variability in perceptual judgements, indicating close links between action competence and perception
    corecore