4,689 research outputs found
Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web
In a peer-to-peer inference system, each peer can reason locally but can also
solicit some of its acquaintances, which are peers sharing part of its
vocabulary. In this paper, we consider peer-to-peer inference systems in which
the local theory of each peer is a set of propositional clauses defined upon a
local vocabulary. An important characteristic of peer-to-peer inference systems
is that the global theory (the union of all peer theories) is not known (as
opposed to partition-based reasoning systems). The main contribution of this
paper is to provide the first consequence finding algorithm in a peer-to-peer
setting: DeCA. It is anytime and computes consequences gradually from the
solicited peer to peers that are more and more distant. We exhibit a sufficient
condition on the acquaintance graph of the peer-to-peer inference system for
guaranteeing the completeness of this algorithm. Another important contribution
is to apply this general distributed reasoning setting to the setting of the
Semantic Web through the Somewhere semantic peer-to-peer data management
system. The last contribution of this paper is to provide an experimental
analysis of the scalability of the peer-to-peer infrastructure that we propose,
on large networks of 1000 peers
α-Melt-mediated crystallization of 1-palmitoyl-2-oleoyl-3-stearoyl- sn -glycerol
The α-melt-mediated crystallization of 1-palmitoyl-2-oleoyl-3-stearoyl-sn-glycerol (POS) has been investigated by differential scanning calorimetry (DSC), combined with polarized-light microscopy. Starting from a completely liquid state, the melt was first cooled down and maintained at a temperature, T 1, during a time, t 1, where the α-phase formed. Then it was heated to a temperature, T 2, above the melting point of α for isothermal solidification into a solid phase, which was identified as Ύ. Based upon DSC solidification peaks, the time-temperature-transformation (TTT) diagram of POS was constructed for these solidification conditions and was compared with the TTT diagram of direct crystallization from the melt. The α-melt-mediated solidification showed accelerated kinetics of the Ύ-phase. The effects of T 1 and t 1 were also studied: at short t 1, crystallization was faster with a decreasing value of T 1, whereas the opposite trend was observed for a longer plateau at T 1. These tendencies were interpreted in terms of three competing phenomena: the density of Ύ-nuclei that can form during the plateau at T 1, α-Ύ solid-state transformation, and memory effects of molecule arrangements in the α-remelted phas
Cation distribution in manganese cobaltite spinels Co3âxMnxO4 (0 †x †1) determined by thermal analysis
Thermogravimetric analysis was used in order to study the reduction in air of submicronic powders of Co3âx Mn x O4 spinels, with 0 †x †1. For x = 0 (i.e. Co3O4), cation reduction occurred in a single step. It involved the CoIII ions at the octahedral sites, which were reduced to Co2+ on producing CoO. For 0 < x †1, the reduction occurred in two stages at increasing temperature with increasing amounts of manganese. The first step corresponded to the reduction of octahedral CoIII ions and the second was attributed to the reduction of octahedral Mn4+ ions to Mn3+. From the individual weight losses and the electrical neutrality of the lattice, the CoIII and Mn4+ ion concentrations were calculated. The distribution of cobalt and manganese ions present on each crystallographic site of the spinel was determined. In contrast to most previous studies that took into account either CoIII and Mn3+ or Co2+, CoIII and Mn4+ only, our thermal analysis study showed that Co2+/CoIII and Mn3+/Mn4+ pairs occupy the octahedral sites. These results were used to explain the resistivity measurements carried out on dense ceramics prepared from our powders sintered at low temperature (700â750 °C) in a Spark Plasma Sintering apparatus
Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling
Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000km(2) in Gavleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n=433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9km (SE 3.2) and 33.8km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon's rank-sum test: P-value=0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed
Specific high contrast imaging instruments are mandatory to characterize
circumstellar disks and exoplanets around nearby stars. Coronagraphs are
commonly used in these facilities to reject the diffracted light of an observed
star and enable the direct imaging and spectroscopy of its circumstellar
environment. One important property of the coronagraph is to be able to work in
broadband light.
Among several proposed coronagraphs, the dual-zone phase mask coronagraph is
a promising solution for starlight rejection in broadband light. In this paper,
we perform the first validation of this concept in laboratory.
First, we recall the principle of the dual-zone phase mask coronagraph. Then,
we describe the high-contrast imaging THD testbed, the manufacturing of the
components and the quality-control procedures. Finally, we study the
sensitivity of our coronagraph to low-order aberrations (inner working angle
and defocus) and estimate its contrast performance. Our experimental broadband
light results are compared with numerical simulations to check agreement with
the performance predictions.
With the manufactured prototype and using a dark hole technique based on the
self-coherent camera, we obtain contrast levels down to between 5
and 17 in monochromatic light (640 nm). We also reach contrast
levels of between 7 and 17 in broadband
( nm, nm and %), which demonstrates the excellent chromatic performance of the dual-zone
phase mask coronagraph.
The performance reached by the dual-zone phase mask coronagraph is promising
for future high-contrast imaging instruments that aim at detecting and
spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
The phase shift of line solitons for the KP-II equation
The KP-II equation was derived by [B. B. Kadomtsev and V. I.
Petviashvili,Sov. Phys. Dokl. vol.15 (1970), 539-541] to explain stability of
line solitary waves of shallow water. Stability of line solitons has been
proved by [T. Mizumachi, Mem. of vol. 238 (2015), no.1125] and [T. Mizumachi,
Proc. Roy. Soc. Edinburgh Sect. A. vol.148 (2018), 149--198]. It turns out the
local phase shift of modulating line solitons are not uniform in the transverse
direction. In this paper, we obtain the -bound for the local phase
shift of modulating line solitons for polynomially localized perturbations
Monensin and forskolin inhibit the transcription rate of sucrase-isomaltase but not the stability of its mRNA in Caco-2 cells
AbstractTreatment of Caco-2 cells with forskolin (25 ÎŒM) or monensin (1 ÎŒM) has previously been shown to cause a marked decrease in the level of sucrase-isomaltase (SI) mRNA, without any effect on the expression of dipeptidylpeptidase IV (DPP-IV). In the present work, we report that there is no significant difference in the stability of SI mRNA between control and treated cells. On the other hand, we demonstrate a decrease in the transcription rate of SI mRNA which is sufficient to account for the decrease in the steady-state level of SI mRNA both in forskolin- and monensin-treated Caco-2 cells
- âŠ