2,591 research outputs found
Post processing of differential images for direct extrasolar planet detection from the ground
The direct imaging from the ground of extrasolar planets has become today a
major astronomical and biological focus. This kind of imaging requires
simultaneously the use of a dedicated high performance Adaptive Optics [AO]
system and a differential imaging camera in order to cancel out the flux coming
from the star. In addition, the use of sophisticated post-processing techniques
is mandatory to achieve the ultimate detection performance required. In the
framework of the SPHERE project, we present here the development of a new
technique, based on Maximum A Posteriori [MAP] approach, able to estimate
parameters of a faint companion in the vicinity of a bright star, using the
multi-wavelength images, the AO closed-loop data as well as some knowledge on
non-common path and differential aberrations. Simulation results show a 10^-5
detectivity at 5sigma for angular separation around 15lambda/D with only two
images.Comment: 12 pages, 6 figures, This paper will be published in the proceedings
of the conference Advances in Adaptive Optics (SPIE 6272), part of SPIE's
Astronomical Telescopes & Instrumentation, 24-31 May 2006, Orlando, F
The phase shift of line solitons for the KP-II equation
The KP-II equation was derived by [B. B. Kadomtsev and V. I.
Petviashvili,Sov. Phys. Dokl. vol.15 (1970), 539-541] to explain stability of
line solitary waves of shallow water. Stability of line solitons has been
proved by [T. Mizumachi, Mem. of vol. 238 (2015), no.1125] and [T. Mizumachi,
Proc. Roy. Soc. Edinburgh Sect. A. vol.148 (2018), 149--198]. It turns out the
local phase shift of modulating line solitons are not uniform in the transverse
direction. In this paper, we obtain the -bound for the local phase
shift of modulating line solitons for polynomially localized perturbations
Imaging the symmetry breaking of molecular orbitals in carbon nanotubes
Carbon nanotubes have attracted considerable interest for their unique
electronic properties. They are fascinating candidates for fundamental studies
of one dimensional materials as well as for future molecular electronics
applications. The molecular orbitals of nanotubes are of particular importance
as they govern the transport properties and the chemical reactivity of the
system. Here we show for the first time a complete experimental investigation
of molecular orbitals of single wall carbon nanotubes using atomically resolved
scanning tunneling spectroscopy. Local conductance measurements show
spectacular carbon-carbon bond asymmetry at the Van Hove singularities for both
semiconducting and metallic tubes, demonstrating the symmetry breaking of
molecular orbitals in nanotubes. Whatever the tube, only two types of
complementary orbitals are alternatively observed. An analytical tight-binding
model describing the interference patterns of ? orbitals confirmed by ab initio
calculations, perfectly reproduces the experimental results
Remotely Operated Train for Inspection and Measurement in CERN's LHC Tunnel
Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation and cryogenic hazards. For this reason a remotely operated modular inspection train, (TIM) running on the LHC tunnel’s overhead monorail has been developed. In order to be compatible with the LHC personnel access system, a small section train that can pass through small openings at the top of sector doors has now been produced. The basic train can be used for remote visual inspection; additional modules give the capability of carrying out remote measurement of radiation levels, environmental conditions around the tunnel, and even remote measurement of the precise position of machine elements such as collimators. The paper outlines the design, development and operation of the equipment including preparation of the infrastructure. Key features of the trains are described along with future developments and intervention scenarios
Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles
Low-frequency Raman scattering experiments have been performed on thin films
consisting of nickel-silver composite nanoparticles embedded in alumina matrix.
It is observed that the Raman scattering by the quadrupolar modes, strongly
enhanced when the light excitation is resonant with the surface dipolar
excitation, is mainly governed by the silver electron contribution to the
plasmon excitation. The Raman results are in agreement with a core-shell
structure of the nanoparticles, the silver shell being loosely bonded to the
nickel core.Comment: 3 figures. To be published in Phys. Rev.
Uniform regularity for the Navier-Stokes equation with Navier boundary condition
We prove that there exists an interval of time which is uniform in the
vanishing viscosity limit and for which the Navier-Stokes equation with Navier
boundary condition has a strong solution. This solution is uniformly bounded in
a conormal Sobolev space and has only one normal derivative bounded in
. This allows to get the vanishing viscosity limit to the
incompressible Euler system from a strong compactness argument
Charge redistribution at Pd surfaces: ab initio grounds for tight-binding interatomic potentials
A simplified tight-binding description of the electronic structure is often
necessary for complex studies of surfaces of transition metal compounds. This
requires a self-consistent parametrization of the charge redistribution, which
is not obvious for late transition series elements (such as Pd, Cu, Au), for
which not only d but also s-p electrons have to be taken into account. We show
here, with the help of an ab initio FP-LMTO approach, that for these elements
the electronic charge is unchanged from bulk to the surface, not only per site
but also per orbital. This implies different level shifts for each orbital in
order to achieve this orbital neutrality rule. Our results invalidate any
neutrality rule which would allow charge redistribution between orbitals to
ensure a common rigid shift for all of them. Moreover, in the case of Pd, the
power law which governs the variation of band energy with respect to
coordination number, is found to differ significantly from the usual
tight-binding square root.Comment: 6 pages, 2 figures, Latex; Phys.Rev. B 56 (1997
Laser Guide Stars for Extremely Large Telescopes: Efficient Shack-Hartmann Wavefront Sensor Design using Weighted center-of-gravity algorithm
Over the last few years increasing consideration has been given to the study
of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by
the atmosphere in optical and near-infrared astronomical observations from the
ground. A possible method for the generation of a LGS is the excitation of the
Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since
the Sodium layer is approximately 10 km thick, the artificial reference source
looks elongated, especially when observed from the edge of a large aperture.
The spot elongation strongly limits the performance of the most common
wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront
sensor, for instance, decreases proportionally to the elongation (in a photon
noise dominated regime). To compensate for this effect a straightforward
solution is to increase the laser power, i.e. to increase the number of
detected photons per subaperture. The scope of the work presented in this paper
is twofold: an analysis of the performance of the Weighted Center of Gravity
algorithm for centroiding with elongated spots and the determination of the
required number of photons to achieve a certain average wavefront error over
the telescope aperture.Comment: 10 pages, 14 figure
- …