685 research outputs found

    Fermiology and electronic homogeneity of the superconducting overdoped cuprate Tl-2201 revealed by quantum oscillations

    Full text link
    We report an angular quantum oscillation study of Tl_2Ba_2CuO_{6+delta} for two different doping levels (Tc = 10K and 26 K) and determine the Fermi surface size and topology in considerable detail. Our results show that Fermi liquid behavior is not confined to the edge of the superconducting dome and is robust up to at least T_c^{max}/3.5. Superconductivity is found to survive up to a larger doping p_c = 0.31 than in La_{2-x}Sr_xCuO_4. Our data imply that electronic inhomogeneity does not play a significant role in the loss of superconductivity and superfluid density in overdoped cuprates, and point towards a purely magnetic or electronic pairing mechanismComment: 4 page

    Electronic Structure of LuRh2Si2: "Small" Fermi Surface Reference to YbRh2Si2

    Full text link
    We present band structure calculations and quantum oscillation measurements on LuRh2Si2, which is an ideal reference to the intensively studied quantum critical heavy-fermion system YbRh2Si2. Our band structure calculations show a strong sensitivity of the Fermi surface on the position of the silicon atoms zSi within the unit cell. Single crystal structure refinement and comparison of predicted and observed quantum oscillation frequencies and masses yield zSi = 0.379c in good agreement with numerical lattice relaxation. This value of zSi is suggested for future band structure calculations on LuRh2Si2 and YbRh2Si2. LuRh2Si2 with a full f electron shell represents the "small" Fermi surface configuration of YbRh2Si2. Our experimentally and ab initio derived quantum oscillation frequencies of LuRh2Si2 show strong differences with earlier measurements on YbRh2Si2. Consequently, our results confirm the contribution of the f electrons to the Fermi surface of YbRh2Si2 at high magnetic fields. Yet the limited agreement with refined fully itinerant local density approximation calculations highlights the need for more elaborated models to describe the Fermi surface of YbRh2Si2.Comment: 12 pages 10 figure

    Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8

    Full text link
    Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.Comment: 5 pages, 4 figures, updated after publication in Physical Review B (Rapid Communication

    Implementation of the Backlund transformations for the Ablowitz-Ladik hierarchy

    Full text link
    The derivation of the Backlund transformations (BTs) is a standard problem of the theory of the integrable systems. Here, I discuss the equations describing the BTs for the Ablowitz-Ladik hierarchy (ALH), which have been already obtained by several authors. The main aim of this work is to solve these equations. This can be done in the framework of the so-called functional representation of the ALH, when an infinite number of the evolutionary equations are replaced, using the Miwa's shifts, with a few equations linking tau-functions with different arguments. It is shown that starting from these equations it is possible to obtain explicit solutions of the BT equations. In other words, the main result of this work is a presentation of the discrete BTs as a superposition of an infinite number of evolutionary flows of the hierarchy. These results are used to derive the superposition formulae for the BTs as well as pure soliton solutions.Comment: 20 page

    Shubnikov-de Haas measurements on LuRh2Si2

    Full text link
    We present Shubnikov-de Haas measurements on LuRh2Si2, the non-magnetic reference compound to the prototypical heavy-fermion system YbRh2Si2. We find an extensive set of orbits with clear angular dependences. Surprisingly, the agreement with non-correlated band structure calculations is limited. This may be related to an uncertainty in the calculations arising from a lack of knowledge about the exact Si atom position in the unit cell. The data on LuRh2Si2 provide an extensive basis for the interpretation of measurements on YbRh2Si2 indicative of discrepancies between the high-field Fermi surface of YbRh2Si2 and the "small" Fermi surface configuration.Comment: 5 page

    High-Field Superconductivity at an Electronic Topological Transition in URhGe

    Full text link
    The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30 tesla. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.Comment: A revised version has been accepted for publication in Nature Physic

    Evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 on entering the superconducting dome

    Get PDF
    Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution (As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and hole Fermi surfaces shrink linearly with decreasing x. This shrinking is accompanied by a strong increase in the quasiparticle effective mass as x is tuned toward the maximum T_c. It is likely that these trends originate from the many-body interaction which give rise to superconductivity, rather than the underlying one-electron bandstructure.Comment: 4 page

    Strong Anisotropy in Spin Suceptibility of Superfluid 3He-B Film Caused by Surface Bound States

    Full text link
    Spin susceptibility of superfluid 3He-B film with specular surfaces is calculated. It is shown that, when the magnetic field is applied in a direction perpendiculr to the film, the suseptibility is significantly enhanced by the contribution from the surface bound states. No such enhancement is found for the magnetic field parallel to the film. A simplified model with spatially constant order parameter is used to elucidate the magnetic properties of the surface bound states. The Majorana nature of the zero energy bound state is also mentioned.Comment: 4 pages, 4 figure

    Spin Foam Diagrammatics and Topological Invariance

    Get PDF
    We provide a simple proof of the topological invariance of the Turaev-Viro model (corresponding to simplicial 3d pure Euclidean gravity with cosmological constant) by means of a novel diagrammatic formulation of the state sum models for quantum BF-theories. Moreover, we prove the invariance under more general conditions allowing the state sum to be defined on arbitrary cellular decompositions of the underlying manifold. Invariance is governed by a set of identities corresponding to local gluing and rearrangement of cells in the complex. Due to the fully algebraic nature of these identities our results extend to a vast class of quantum groups. The techniques introduced here could be relevant for investigating the scaling properties of non-topological state sums, being proposed as models of quantum gravity in 4d, under refinement of the cellular decomposition.Comment: 20 pages, latex with AMS macros and eps figure

    Properties of 3-manifolds for relativists

    Full text link
    In canonical quantum gravity certain topological properties of 3-manifolds are of interest. This article gives an account of those properties which have so far received sufficient attention, especially those concerning the diffeomorphism groups of 3-manifolds. We give a summary of these properties and list some old and new results concerning them. The appendix contains a discussion of the group of large diffeomorphisms of the ll-handle 3-manifold.Comment: 20 pages. Plain-TeX, no figures, 1 Table (A4 format
    • …
    corecore