43 research outputs found

    Explaining Myanmar's Regime Transition: The Periphery is Central

    Get PDF
    In 2010, Myanmar (Burma) held its first elections after 22 years of direct military rule. Few compelling explanations for this regime transition have emerged. This article critiques popular accounts and potential explanations generated by theories of authoritarian ‘regime breakdown’ and ‘regime maintenance’. It returns instead to the classical literature on military intervention and withdrawal. Military regimes, when not terminated by internal factionalism or external unrest, typically liberalise once they feel they have sufficiently addressed the crises that prompted their seizure of power. This was the case in Myanmar. The military intervened for fear that political unrest and ethnic-minority separatist insurgencies would destroy Myanmar’s always-fragile territorial integrity and sovereignty. Far from suddenly liberalising in 2010, the regime sought to create a ‘disciplined democracy’ to safeguard its preferred social and political order twice before, but was thwarted by societal opposition. Its success in 2010 stemmed from a strategy of coercive state-building and economic incorporation via ‘ceasefire capitalism’, which weakened and co-opted much of the opposition. Having altered the balance of forces in its favour, the regime felt sufficiently confident to impose its preferred settlement. However, the transition neither reflected total ‘victory’ for the military nor secured a genuine or lasting peace

    De Novo Generation of Hit-like Molecules from Gene Expression Signatures Using Artificial Intelligence

    No full text
    Finding new molecules with a desired biological activity is an extremely difficult task. In this context, artificial intelligence and generative models have been used for molecular de novo design and compound optimization. Herein, we report the first generative model that bridges systems biology and molecular design conditioning a generative adversarial network with transcriptomic data. By doing this we could generate molecules that have high probability to produce a desired biological effect at cellular level. We show that this model is able to design active-like molecules for desired targets without any previous target annotation of the training compounds as long as the gene expression signature of the desired state is provided. The molecules generated by this model are more similar to active compounds than the ones identified by similarity of gene expression signatures, which is the state-of-the-art method for navigating compound-induced gene expression data. Overall, this method represents a novel way to bridge chemistry and biology to advance in the long and difficult road of drug discovery

    Cell Morphology-Guided De Novo Hit Design by Conditioning Generative Adversarial Networks on Phenotypic Image Features

    No full text
    Developing new small molecules that are bioactive is time-consuming, costly and rarely successful. As a mitigation strategy, we apply, for the first time, generative adversarial networks to de novo design of small molecules using a phenotype-based drug discovery approach. We trained our model on a set of 30,000 compounds and their respective morphological profiles extracted from high content images; no target information was used to train the model. Using this approach, we were able to automatically design agonist-like compounds of different molecular targets

    Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels

    No full text
    An extensive proteomic approach relies on the possibility to visualize and analyze various types of proteins, including hydrophobic proteins which are rarely detectable on two-dimensional electrophoresis (2-DE) gels. In this study, two methods were employed for the purification of hydrophobic proteins from Arabidopsis thaliana leaf plasma membrane (PM) model plants, prior to analysis on 2-DE immobilized pH gradient (IPG) gels. Solubilization efficiency of two detergents, (3-[(3-cholomidopropyl)-1-propanesulfonic acid (CHAPS) and C8phi, were tested for the recovery of hydrophobic proteins. An immunological approach was used to determine the efficiency of the above methods. Fractionation of proteins by Triton X-114 combined with solubilization with CHAPS resulted in the inability to detect hydrophobic proteins on 2-DE gels. The use of C8phi for protein solubilization did not improve this result. On the contrary, after treatment of membranes with alkaline buffer, the solubilization of PM proteins with detergent C8phi permitted the recovery of such proteins on 2-DE gels. The combination of membrane washing and the use of zwitterionic detergent resulted in the resolution of several integral proteins and the disappearance of peripheral proteins. In the resolution of expressed genome proteins, both large pH gradients in the first dimension and various acrylamide concentrations in the second dimension must be used. Notwithstanding, it is important to combine various sample treatments and different detergents in order to resolve soluble and hydrophobic proteins

    Kinetic characterization of a novel endo-ÎČ-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans

    No full text
    EndoBI-1 is a recently isolated endo-ÎČ-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans

    ‘All In’: a pragmatic framework for COVID‐19 testing and action on a global scale

    No full text
    Current demand for SARS‐CoV‐2 testing is straining material resource and labor capacity around the globe. As a result, the public health and clinical community are hindered in their ability to monitor and contain the spread of COVID‐19. Despite broad consensus that more testing is needed, pragmatic guidance toward realizing this objective has been limited. This paper addresses this limitation by proposing a novel and geographically agnostic framework (the 4Ps framework) to guide multidisciplinary, scalable, resource‐efficient, and achievable efforts toward enhanced testing capacity. The 4Ps (Prioritize, Propagate, Partition, and Provide) are described in terms of specific opportunities to enhance the volume, diversity, characterization, and implementation of SARS‐CoV‐2 testing to benefit public health. Coordinated deployment of the strategic and tactical recommendations described in this framework has the potential to rapidly expand available testing capacity, improve public health decision‐making in response to the COVID‐19 pandemic, and/or to be applied in future emergent disease outbreaks

    Versatile and flexible microfluidic qPCR test for high-throughput SARS-CoV-2 and cellular response detection in nasopharyngeal swab samples

    No full text
    The emergence and quick spread of SARS-CoV-2 has pointed at a low capacity response for testing large populations in many countries, in line of material, technical and staff limitations. The traditional RT-qPCR diagnostic test remains the reference method and is by far the most widely used test. These assays are limited to a couple of probe sets, require large sample PCR reaction volumes, along with an expensive and time-consuming RNA extraction steps. Here we describe a quantitative nanofluidic assay that overcomes some of these shortcomings, based on the Biomark instrument from Fluidigm. This system offers the possibility of performing 4608 qPCR end-points in a single run, equivalent to 192 clinical samples combined with 12 pairs of primers/probe sets in duplicate, thus allowing the monitoring in addition to SARS-CoV-2 probes of other pathogens and/or host cellular responses (virus receptors, response markers, microRNAs). Its 10 nL range volume is compatible with sensitive and reproducible reactions that can be easily and cost-effectively adapted to various RT-qPCR configurations and sets of primers/probe. Finally, we also evaluated the use of inactivating lysis buffers composed of various detergents in the presence or absence of proteinase K to assess the compatibility of these buffers with a direct reverse transcription enzymatic step and we propose several procedures, bypassing the need for RNA purification. We advocate that the combined utilization of an optimized processing buffer and a high-throughput real-time PCR device would contribute to improve the turn-around-time to deliver the test results to patients and increase the SARS-CoV-2 testing capacities
    corecore