16 research outputs found

    Forged by giants: understanding the dwarf carbon stars

    Get PDF
    Dwarf carbon (dC) stars are main-sequence stars with carbon molecular bands (C_2, CN, CH) in their optical spectra. They are an important class of post-mass transfer binaries since, as main-sequence stars, dCs cannot have produced carbon themselves. Rather, the excess carbon originated in an evolved companion, now a white dwarf, and was transferred to the dC. Because of their complex histories, dCs are an excellent sample for testing stellar physics, including common-envelope evolution, wind accretion, mass transfer efficiencies, and accretion spin-up. However, their fundamental properties remain a mystery, and this impedes efforts to use dCs to constrain the evolution of binary systems. Here, I have investigated the observed properties of dCs, both as a population and as individual objects. Using multi-epoch spectroscopy, I constrained the dC binary fraction to be consistent with 100% binarity. The best-fit orbital separation distribution agrees with the few known dC orbital periods, and suggests a bimodal distribution (one sample with mean periods of hundreds of days, the other thousands of days). I also built a set of optical templates to find and classify additional dCs in spectroscopic surveys. Further, I discovered periodic variability in photometry of 34 dCs, dramatically increasing the number of measured periods. This allowed me to investigate mass transfer mechanisms that are likely to be important in the formation of dCs. Interestingly, some of these objects have short periods (P < 2d), indicating they have gone through a common-envelope phase. I explored the implications of these short-period dCs and how they will allow for constraints to be placed on the physics of common-envelope evolution. Finally, I searched for signs of spin-up and activity in dCs using X-ray emission. From this, I found that dCs are consistent with being rapid rotators, similar to what is observed in samples of normal young dwarfs. In summary, this dissertation presents the most extensive set of dC observational properties that has been compiled to date. I have confirmed the binary origin of dCs and linked some to post-common-envelope binaries. My work has provided a firmer foundation for the use of dCs to explore many essential astrophysical phenomena

    Classifying Single Stars and Spectroscopic Binaries Using Optical Stellar Templates

    Full text link
    Stellar spectral classification is a fundamental tool of modern astronomy, providing insight into physical characteristics such as effective temperature, surface gravity, and metallicity. Accurate and fast spectral typing is an integral need for large all-sky spectroscopic surveys like the SDSS and LAMOST. Here, we present the next version of PyHammer, stellar spectral classification software that uses optical spectral templates and spectral line index measurements. PyHammer v2.0 extends the classification power to include carbon (C) stars, DA white dwarf (WD) stars, and also double-lined spectroscopic binaries (SB2). This release also includes a new empirical library of luminosity-normalized spectra that can be used to flux calibrate observed spectra, or to create synthetic SB2 spectra. We have generated physically reasonable SB2 combinations as templates, adding to PyHammer the ability to spectrally type SB2s. We test classification success rates on SB2 spectra, generated from the SDSS, across a wide range of spectral types and signal-to-noise ratios. Within the defined range of pairings described, more than 95%95\% of SB2s are correctly classified.Comment: 16 pages, 7 figures, 4 tables; accepted to ApJ

    A Chandra Study: Are Dwarf Carbon Stars Spun Up and Rejuvenated by Mass Transfer?

    Get PDF
    Carbon stars (with C/O> 1) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. The case is nearly iron-clad now that the formerly mysterious dwarf carbon (dC) stars are actually far more common than C giants, and have accreted carbon-rich material from a former AGB companion, yielding a white dwarf and a dC star that has gained both significant mass and angular momentum. Some such dC systems have undergone a planetary nebula phase, and some may evolve to become CH, CEMP, or Ba giants. Recent studies indicate that most dCs are likely from older, metal-poor kinematic populations. Given the well-known anti-correlation of age and activity, dCs would not be expected to show significant X-ray emission related to coronal activity. However, accretion spin-up might be expected to rejuvenate magnetic dynamos in these post mass-transfer binary systems. We describe our Chandra pilot study of six dCs selected from the SDSS for Halpha emission and/or a hot white dwarf companion, to test whether their X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo. We detect all 6 dCs in the sample, which have X-ray luminosities ranging from logLx= 28.5 - 29.7, preliminary evidence that dCs may be active at a level consistent with stars that have short rotation periods of several days or less. More definitive results require a sample of typical dCs with deeper X-ray observations to better constrain their plasma temperatures.Comment: 13 pages, 5 figures. Revised and resubmitted June 20, accepted June 21, 2019 to Ap

    The fastest stars in the Galaxy

    Full text link
    We report a spectroscopic search for hypervelocity white dwarfs (WDs) that are runaways from Type Ia supernovae (SNe Ia) and related thermonuclear explosions. Candidates are selected from Gaia data with high tangential velocities and blue colors. We find six new runaways, including four stars with radial velocities (RVs) >1000kms1>1000\,\rm km\,s^{-1} and total space velocities 1300kms1\gtrsim 1300\,\rm km\,s^{-1}. These are most likely the surviving donors from double-degenerate binaries in which the other WD exploded. The other two objects have lower minimum velocities, 600kms1\gtrsim 600\,\rm km\,s^{-1}, and may have formed through a different mechanism, such as pure deflagration of a WD in a Type Iax supernova. The four fastest stars are hotter and smaller than the previously known "D6^6 stars," with effective temperatures ranging from \sim20,000 to \sim130,000 K and radii of 0.020.10R\sim 0.02-0.10\,R_{\odot}. Three of these have carbon-dominated atmospheres, and one has a helium-dominated atmosphere. Two stars have RVs of 1694-1694 and 2285kms1-2285\rm \,km\,s^{-1} -- the fastest systemic stellar RVs ever measured. Their inferred birth velocities, 22002500kms1\sim 2200-2500\,\rm km\,s^{-1}, imply that both WDs in the progenitor binary had masses >1.0M>1.0\,M_{\odot}. The high observed velocities suggest that a dominant fraction of the observed hypervelocity WD population comes from double-degenerate binaries whose total mass significantly exceeds the Chandrasekhar limit. However, the two nearest and faintest D6^6 stars have the lowest velocities and masses, suggesting that observational selection effects favor rarer, higher-mass stars. A significant population of fainter low-mass runaways may still await discovery. We infer a birth rate of D6^6 stars that is consistent with the SN Ia rate. The birth rate is poorly constrained, however, because the luminosities and lifetimes of D6\rm D^6 stars are uncertain.Comment: 26 pages, 17 figures. Accepted to OJ
    corecore