10 research outputs found

    Shift in skin microbiota of Western European women across aging

    No full text
    International audienceAims : The objective of our study was to compare the microbiota diversity between two different age groups of Western European women. Methods and Results : Skin‐swab samples were collected directly on the forehead of 34 healthy Western European women: 17 younger (21‐31 years old) and 17 older individuals (54‐69 years old). Bacterial communities were evaluated using the 16S rRNA gene sequencing. Data revealed a higher alpha diversity on the skin of older individuals compared with younger ones. Overall microbiota structure was different between the two age groups, as demonstrated by beta diversity analysis, which also highlighted a high interpersonal variation within older individuals. Furthermore, taxonomic composition analysis showed both an increase in Proteobacteria and a decrease in Actinobacteria on the older skin. At the genus level, older skin exhibited a significant increase in Corynebacterium and a decrease in Propionibacterium relative abundance. Conclusions : Our study revealed a shift in the distribution of skin microbiota during chronological aging in Western European women. Significance and Impact of Study: Altogether these results could become the basis to develop new approaches aiming to rebalance the skin microbiota, which is modified during the aging process

    The IgH 3' regulatory region controls somatic hypermutation in germinal center B cells.

    Get PDF
    International audienceInteractions with cognate antigens recruit activated B cells into germinal centers where they undergo somatic hypermutation (SHM) in V(D)J exons for the generation of high-affinity antibodies. The contribution of IgH transcriptional enhancers in SHM is unclear. The EÎŒ enhancer upstream of CÎŒ has a marginal role, whereas the influence of the IgH 3' regulatory region (3'RR) enhancers (hs3a, hs1,2, hs3b, and hs4) is controversial. To clarify the latter issue, we analyzed mice lacking the whole 30-kb extent of the IgH 3'RR. We show that SHM in VH rearranged regions is almost totally abrogated in 3'RR-deficient mice, whereas the simultaneous Ig heavy chain transcription rate is only partially reduced. In contrast, SHM in Îș light chain genes remains unaltered, acquitting for any global SHM defect in our model. Beyond class switch recombination, the IgH 3'RR is a central element that controls heavy chain accessibility to activation-induced deaminase modifications including SHM

    Physiological and druggable skipping of immunoglobulin variable exons in plasma cells

    No full text
    International audienceThe error-prone V(D)J recombination process generates considerable amounts of nonproductive immunoglobulin (Ig) pre-mRNAs. We recently demonstrated that aberrant Ig chains lacking variable (V) domains can be produced after nonsense-associated altered splicing (NAS) events. Remarkably, the expression of these truncated Ig polypeptides heightens endoplasmic reticulum stress and shortens plasma cell (PC) lifespan. Many questions remain regarding the molecular mechanisms underlying this new truncated Ig exclusion (TIE-) checkpoint and its restriction to the ultimate stage of B-cell differentiation. To address these issues, we evaluated the extent of NAS of Ig pre-mRNAs using an Ig heavy chain (IgH) knock-in model that allows for uncoupling of V exon skipping from TIE-induced apoptosis. We found high levels of V exon skipping in PCs compared with B cells, and this skipping was correlated with a biallelic boost in IgH transcription during PC differentiation. Chromatin analysis further revealed that the skipped V exon turned into a pseudo-intron. Finally, we showed that hypertranscription of Ig genes facilitated V exon skipping upon passive administration of splice-switching antisense oligonucleotides (ASOs). Thus, V exon skipping is coupled to transcription and increases as PC differentiation proceeds, likely explaining the late occurrence of the TIE-checkpoint and opening new avenues for ASO-mediated strategies in PC disorders

    Atopic Dermatitis Studies through In Vitro Models

    No full text
    Atopic dermatitis (AD) is a complex inflammatory skin condition that is not fully understood. Epidermal barrier defects and Th2 immune response dysregulations are thought to play crucial roles in the pathogenesis of the disease. A vicious circle takes place between these alterations, and it can further be complicated by additional genetic and environmental factors. Studies investigating in more depth the etiology of the disease are thus needed in order to develop functional treatments. In recent years, there have been significant advances regarding in vitro models reproducing important features of AD. However, since a lot of models have been developed, finding the appropriate experimental setting can be difficult. Therefore, herein, we review the different types of in vitro models mimicking features of AD. The simplest models are two-dimensional culture systems composed of immune cells or keratinocytes, whereas three-dimensional skin or epidermal equivalents reconstitute more complex stratified tissues exhibiting barrier properties. In those models, hallmarks of AD are obtained, either by challenging tissues with interleukin cocktails overexpressed in AD epidermis or by silencing expression of pivotal genes encoding epidermal barrier proteins. Tissue equivalents cocultured with lymphocytes or containing AD patient cells are also described. Furthermore, each model is placed in its study context with a brief summary of the main results obtained. In conclusion, the described in vitro models are useful tools to better understand AD pathogenesis, but also to screen new compounds in the field of AD, which probably will open the way to new preventive or therapeutic strategies
    corecore